Cargando…
Antigen-reactive T cell clones. I. Transcomplementing hybrid I-A-region gene products function effectively in antigen presentation
Studies in our laboratory and elsewhere have shown that it is possible to propagate antigen-specific murine T cells in vitro with resultant specific stepwise enrichment of antigen-induced proliferative cells. The proliferative responses of these T cells are antigen specific and dependent upon the pr...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1980
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185955/ https://www.ncbi.nlm.nih.gov/pubmed/6158548 |
Sumario: | Studies in our laboratory and elsewhere have shown that it is possible to propagate antigen-specific murine T cells in vitro with resultant specific stepwise enrichment of antigen-induced proliferative cells. The proliferative responses of these T cells are antigen specific and dependent upon the presence of antigen-presenting cells (spleen cells) that share the I-A subregion with the proliferating T cell. Using techniques of soft-agar cloning, it has been further possible to isolate clones of antigen-reactive T lymphocytes from such long-term cultures. Data suggesting that these were clones of antigen-reactive T cells were obtained by studying the recognition of antigen in association with antigen-presenting cells with a panel of such clones of antigen-reactive T cells. Proof of clonality was obtained by subcloning. Clones derived from F1-immune mice can be divided into three separate categories: one clone recognizes antigen in association with antigen-presenting determinants of parent A and the F1; the second type recognizes antigen in association with antigen-presenting determinants of parent B and the F1; and the third type recognizes antigen only in association with antigen-presenting determinants of the F1 mouse. Genetic studies on the major histocompatibility complex requirements for antigen presentation to such F1-reactive T cell clones suggests that the hybrid antigen-presenting determinant in this system results from transcomplementation of products of the I-A region of haplotypes a and b. These studies support the concept developed in our laboratory that there exist unique F1 hybrid determinants on (A/J X C57BL/6) F1 cells and suggest that these determinants can be utilized physiologically by hybrid mice in immunocompetent cellular interactions. |
---|