Cargando…

Tumorigenicity and lysis by natural killers

Detailed analysis of the natural killer (NK) activity directed at nontumorigenic cell lines and their transformed tumorigenic derivatives has revealed a paradox. On the one hand, a correlation has been found between the tumorigenic potential of chemically transformed fibroblast cell lines and their...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1981
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2186044/
https://www.ncbi.nlm.nih.gov/pubmed/6161207
_version_ 1782145877927788544
collection PubMed
description Detailed analysis of the natural killer (NK) activity directed at nontumorigenic cell lines and their transformed tumorigenic derivatives has revealed a paradox. On the one hand, a correlation has been found between the tumorigenic potential of chemically transformed fibroblast cell lines and their sensitivity to NK cells in vitro. Nontransformed cells (N-type cell lines) and cells tumorigenic in normal mice (C-type cell lines) are resistant to NK-mediated lysis. In contrast, cell lines that are tumorigenic in ATxFL mice (these mice are very low in NK activity), but not in normal mice (I-type cell lines) are sensitive to NK-mediated lysis. These findings support the concept that NK activity is involved in host surveillance against tumors. On the other hand, NK- resistant fibroblasts, whether taken directly form animals or derived as tumorigenic or nontumorigenic cell lines, compete with NK-sensitive target cells to inhibit their lysis by NK effectors. Not only are both NK-sensitive and -resistant cells recognized by NK effectors but both receive lytic signals from NK effector cells. Target cell resistance is a result of a protein synthesis-dependent mechanism that prevents lysis such that in the presence of inhibitors of protein synthesis all fibroblasts tested are NK sensitive. Those fibroblasts that are normally sensitive to NK-mediated lysis must be deficient in their ability to produce or respond to this counterlytic mechanism. These findings are in contrast with the general findings when lymphoid cells are studied as NK targets where sensitivity appears to be a result of recognition by NK effectors. Because our findings show that transformed and normal cells express the same recognition determinants, in order for NK activity to play an important in vivo role in tumor surveillance, a mechanism must operate to permit NK effectors to find their targets in vivo. In the absence of a special discrimination mechanism, the killing of NK-sensitive transformants that arise autochronously would be less than optimal as a consequence of competition by the normal, NK-resistant, cells.
format Text
id pubmed-2186044
institution National Center for Biotechnology Information
language English
publishDate 1981
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21860442008-04-17 Tumorigenicity and lysis by natural killers J Exp Med Articles Detailed analysis of the natural killer (NK) activity directed at nontumorigenic cell lines and their transformed tumorigenic derivatives has revealed a paradox. On the one hand, a correlation has been found between the tumorigenic potential of chemically transformed fibroblast cell lines and their sensitivity to NK cells in vitro. Nontransformed cells (N-type cell lines) and cells tumorigenic in normal mice (C-type cell lines) are resistant to NK-mediated lysis. In contrast, cell lines that are tumorigenic in ATxFL mice (these mice are very low in NK activity), but not in normal mice (I-type cell lines) are sensitive to NK-mediated lysis. These findings support the concept that NK activity is involved in host surveillance against tumors. On the other hand, NK- resistant fibroblasts, whether taken directly form animals or derived as tumorigenic or nontumorigenic cell lines, compete with NK-sensitive target cells to inhibit their lysis by NK effectors. Not only are both NK-sensitive and -resistant cells recognized by NK effectors but both receive lytic signals from NK effector cells. Target cell resistance is a result of a protein synthesis-dependent mechanism that prevents lysis such that in the presence of inhibitors of protein synthesis all fibroblasts tested are NK sensitive. Those fibroblasts that are normally sensitive to NK-mediated lysis must be deficient in their ability to produce or respond to this counterlytic mechanism. These findings are in contrast with the general findings when lymphoid cells are studied as NK targets where sensitivity appears to be a result of recognition by NK effectors. Because our findings show that transformed and normal cells express the same recognition determinants, in order for NK activity to play an important in vivo role in tumor surveillance, a mechanism must operate to permit NK effectors to find their targets in vivo. In the absence of a special discrimination mechanism, the killing of NK-sensitive transformants that arise autochronously would be less than optimal as a consequence of competition by the normal, NK-resistant, cells. The Rockefeller University Press 1981-01-01 /pmc/articles/PMC2186044/ /pubmed/6161207 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Tumorigenicity and lysis by natural killers
title Tumorigenicity and lysis by natural killers
title_full Tumorigenicity and lysis by natural killers
title_fullStr Tumorigenicity and lysis by natural killers
title_full_unstemmed Tumorigenicity and lysis by natural killers
title_short Tumorigenicity and lysis by natural killers
title_sort tumorigenicity and lysis by natural killers
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2186044/
https://www.ncbi.nlm.nih.gov/pubmed/6161207