Cargando…

Augmentation of spontaneous macrophage-mediated cytolysis by eosinophil peroxidase

Eosinophil peroxidase (EPO), a cationic protein purified from horse blood, adhered to four different types of tumor cells, markedly potentiating their lysis by preformed or enzymatically generated H(2)0(2) (up to 76-fold, as assayed in serum-containing tissue culture medium without supplemental hali...

Descripción completa

Detalles Bibliográficos
Autores principales: Nathan, CF, Klebanoff, SJ
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2186678/
https://www.ncbi.nlm.nih.gov/pubmed/6802924
Descripción
Sumario:Eosinophil peroxidase (EPO), a cationic protein purified from horse blood, adhered to four different types of tumor cells, markedly potentiating their lysis by preformed or enzymatically generated H(2)0(2) (up to 76-fold, as assayed in serum-containing tissue culture medium without supplemental halide). Similarly, compared with uncoated tumor cells, EPO-coated tumor cells were up to 32 times more sensitive to lysis when incubated with macrophages or granulocytes whose respiratory burst was triggered by PMA. However, EPO-coated tumor cells were also readily lysed by bacillus Calmette- Guerin-activated macrophages in the absence of exogenous triggering agents. This spontaneous cytolysis was rapid (50 percent at 2 h) and potent (50 percent lysis at macrophage/tumor cell ratios of 1.5 to 4.6), and was observed with both a peroxide-sensitive tumor (TLX9) and a peroxide-resistant tumor (NK lymphoma). Under the conditions used, neither EPO alone nor macrophages alone were spontaneously cytolytic. Neither EPO nor EPO-coated tumor cells triggered a detectable increment in H(2)0(2) release from macrophages. Nonetheless, spontaneous macrophage-mediated cytolysis of EPO- coated tumor cells was completely inhibitable by catalase (50 percent inhibition, 23 U/ml), although not by heated catalase, indicating a requirement for H(2)0(2). Cytolysis was also completely inhibitable by azide (50 percent inhibition, 2.6 X 10 -5 M), indicating a requirement for enzymatic activity of EPO. Thus, a cytophilic peroxidase from eosinophils and H(2)0(2) spontaneously released from activated macrophages interacted synergistically in a physiologic medium to destroy tumor cells.