Cargando…

Hapten-specific responses to the phenyltrimethylamino hapten. III. Mice whose delayed-type hypersensitivity responses cannot be abrogated by the presence of anti-idiotypic suppressor T cells lack a critical modulatory T cell function

A single intraperitoneal injection of the monovalent synthetic antigen, tyrosinated trimethylaminoaniline [tyr(TMA)] in Freund's complete adjuvant induces an antiidiotypic second-order T suppressor (Ts2) cell population 6 wk later. This population was able to suppress TMA- specific delayed-type...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2186700/
https://www.ncbi.nlm.nih.gov/pubmed/6210741
_version_ 1782146003256737792
collection PubMed
description A single intraperitoneal injection of the monovalent synthetic antigen, tyrosinated trimethylaminoaniline [tyr(TMA)] in Freund's complete adjuvant induces an antiidiotypic second-order T suppressor (Ts2) cell population 6 wk later. This population was able to suppress TMA- specific delayed-type hypersensitivity (DTH) responses when adoptively transferred into normal syngeneic recipients. However, they failed to function intrinsically. The inability of the Ts2 to function intrinsically was not caused by compensating idiotype-negative T cells that mediate DTH. Rather, this paradoxical observation was found to be caused by the absence or loss of function of a critical modulatory T cell population in the suppressor cell-bearing mice. This cell is functionally active in normal mice immunized for DTH responses and is sensitive to cyclophosphamide treatment. In addition, this cell type bears idiotype on its surface and is Thy-1+ and Lyt-1-,2+. It was demonstrated that by adoptively transferring the activated modulatory T cells from normal mice into tyr(TMA)-immune recipients, it was possible to observe suppressor cell function intrinsically. The potential importance of modulatory T cell function in the regulation of antibody and DTH responses is discussed.
format Text
id pubmed-2186700
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21867002008-04-17 Hapten-specific responses to the phenyltrimethylamino hapten. III. Mice whose delayed-type hypersensitivity responses cannot be abrogated by the presence of anti-idiotypic suppressor T cells lack a critical modulatory T cell function J Exp Med Articles A single intraperitoneal injection of the monovalent synthetic antigen, tyrosinated trimethylaminoaniline [tyr(TMA)] in Freund's complete adjuvant induces an antiidiotypic second-order T suppressor (Ts2) cell population 6 wk later. This population was able to suppress TMA- specific delayed-type hypersensitivity (DTH) responses when adoptively transferred into normal syngeneic recipients. However, they failed to function intrinsically. The inability of the Ts2 to function intrinsically was not caused by compensating idiotype-negative T cells that mediate DTH. Rather, this paradoxical observation was found to be caused by the absence or loss of function of a critical modulatory T cell population in the suppressor cell-bearing mice. This cell is functionally active in normal mice immunized for DTH responses and is sensitive to cyclophosphamide treatment. In addition, this cell type bears idiotype on its surface and is Thy-1+ and Lyt-1-,2+. It was demonstrated that by adoptively transferring the activated modulatory T cells from normal mice into tyr(TMA)-immune recipients, it was possible to observe suppressor cell function intrinsically. The potential importance of modulatory T cell function in the regulation of antibody and DTH responses is discussed. The Rockefeller University Press 1982-06-01 /pmc/articles/PMC2186700/ /pubmed/6210741 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Hapten-specific responses to the phenyltrimethylamino hapten. III. Mice whose delayed-type hypersensitivity responses cannot be abrogated by the presence of anti-idiotypic suppressor T cells lack a critical modulatory T cell function
title Hapten-specific responses to the phenyltrimethylamino hapten. III. Mice whose delayed-type hypersensitivity responses cannot be abrogated by the presence of anti-idiotypic suppressor T cells lack a critical modulatory T cell function
title_full Hapten-specific responses to the phenyltrimethylamino hapten. III. Mice whose delayed-type hypersensitivity responses cannot be abrogated by the presence of anti-idiotypic suppressor T cells lack a critical modulatory T cell function
title_fullStr Hapten-specific responses to the phenyltrimethylamino hapten. III. Mice whose delayed-type hypersensitivity responses cannot be abrogated by the presence of anti-idiotypic suppressor T cells lack a critical modulatory T cell function
title_full_unstemmed Hapten-specific responses to the phenyltrimethylamino hapten. III. Mice whose delayed-type hypersensitivity responses cannot be abrogated by the presence of anti-idiotypic suppressor T cells lack a critical modulatory T cell function
title_short Hapten-specific responses to the phenyltrimethylamino hapten. III. Mice whose delayed-type hypersensitivity responses cannot be abrogated by the presence of anti-idiotypic suppressor T cells lack a critical modulatory T cell function
title_sort hapten-specific responses to the phenyltrimethylamino hapten. iii. mice whose delayed-type hypersensitivity responses cannot be abrogated by the presence of anti-idiotypic suppressor t cells lack a critical modulatory t cell function
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2186700/
https://www.ncbi.nlm.nih.gov/pubmed/6210741