Cargando…

Suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells

Each of 11 tumors tested produced a factor that markedly suppressed the ability of macrophages to release H2O2 or O.2- in response to phorbol myristate acetate or zymosan. Four of seven normal cell types produced a similar activity, which was 3.5-7 times lower in titer than that in tumor cell-condit...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2186804/
https://www.ncbi.nlm.nih.gov/pubmed/7153714
_version_ 1782146026794123264
collection PubMed
description Each of 11 tumors tested produced a factor that markedly suppressed the ability of macrophages to release H2O2 or O.2- in response to phorbol myristate acetate or zymosan. Four of seven normal cell types produced a similar activity, which was 3.5-7 times lower in titer than that in tumor cell-conditioned medium (TCM), and which was much more rapidly reversible in its effects. TCM caused 50% inhibition of H2O2 release when it was present in the medium for 48 h at a concentration of 13%, or when 100% TCM was present in the medium for 18 h. The H2O2-releasing capacity of macrophages incubated in TCM only returned to control levels by 6 d after its removal. TCM prevented augmentation of H2O2- releasing capacity by lymphokines. The titer of suppressive activity in TCM depended on both the concentration of tumor cells and the duration of their incubation. TCM did not augment the activity of catalase, myeloperoxidase, glutathione peroxidase, or glutathione reductase or the content of glutathione within macrophages, suggesting that decreased synthesis rather than increased catabolism was responsible for reduced secretion of H2O2. Suppression of the release of H2O2 or O.2- by TCM appeared to be a relatively specific effect, in that TCM increased macrophage spreading and adherence to glass while exerting little influence on rates of phagocytosis, synthesis of protein, or secretion of lysozyme, plasminogen activator, or arachidonic acid and its metabolites. Thus, tumor cells and some normal cells can secrete a factor that selectively deactivates macrophage oxidative metabolism.
format Text
id pubmed-2186804
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21868042008-04-17 Suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells J Exp Med Articles Each of 11 tumors tested produced a factor that markedly suppressed the ability of macrophages to release H2O2 or O.2- in response to phorbol myristate acetate or zymosan. Four of seven normal cell types produced a similar activity, which was 3.5-7 times lower in titer than that in tumor cell-conditioned medium (TCM), and which was much more rapidly reversible in its effects. TCM caused 50% inhibition of H2O2 release when it was present in the medium for 48 h at a concentration of 13%, or when 100% TCM was present in the medium for 18 h. The H2O2-releasing capacity of macrophages incubated in TCM only returned to control levels by 6 d after its removal. TCM prevented augmentation of H2O2- releasing capacity by lymphokines. The titer of suppressive activity in TCM depended on both the concentration of tumor cells and the duration of their incubation. TCM did not augment the activity of catalase, myeloperoxidase, glutathione peroxidase, or glutathione reductase or the content of glutathione within macrophages, suggesting that decreased synthesis rather than increased catabolism was responsible for reduced secretion of H2O2. Suppression of the release of H2O2 or O.2- by TCM appeared to be a relatively specific effect, in that TCM increased macrophage spreading and adherence to glass while exerting little influence on rates of phagocytosis, synthesis of protein, or secretion of lysozyme, plasminogen activator, or arachidonic acid and its metabolites. Thus, tumor cells and some normal cells can secrete a factor that selectively deactivates macrophage oxidative metabolism. The Rockefeller University Press 1982-10-01 /pmc/articles/PMC2186804/ /pubmed/7153714 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells
title Suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells
title_full Suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells
title_fullStr Suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells
title_full_unstemmed Suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells
title_short Suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells
title_sort suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2186804/
https://www.ncbi.nlm.nih.gov/pubmed/7153714