Cargando…

Characterization of a membrane pore-forming protein from Entamoeba histolytica

We describe the partial purification and characterization of a pore- forming material (PEM) from Entamoeba histolytica. The formation of ion channels by PFM was examined in three systems. (a) PFM depolarizes J774 macrophages and mouse spleen lymphocytes as measured by [3H]TPP+ uptake. (b) PFM induce...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2186882/
https://www.ncbi.nlm.nih.gov/pubmed/6294211
Descripción
Sumario:We describe the partial purification and characterization of a pore- forming material (PEM) from Entamoeba histolytica. The formation of ion channels by PFM was examined in three systems. (a) PFM depolarizes J774 macrophages and mouse spleen lymphocytes as measured by [3H]TPP+ uptake. (b) PFM induces rapid monovalent cation flux across the membrane of phosphatidylcholine-cholesterol vesicles. (c) PFM confers a voltage-dependent conductance to artificial planar bilayers, which is resolved as a summation of opening of individually conducting steps of 67 pS in 0.1 M KCl. Monomers of PFM are functional; however, a preferential aggregation occurs in the planar bilayer. Activity is pronase, trypsin, and heat sensitive and is stable between pH 5-8. PFM is not secreted by unstimulated amoebae but after exposure to the calcium ionophore A23187, concanavalin A, and E. coli lipopolysaccharide, 5-10% of the total cell content of PFM is released into the medium within 5-10 min. High-performance gel filtration results in an approximately 1,000-fold purification of PFM and gives an Mr of 30,000. This protein may play a role in the cytotoxicity mediated by E. histolytica.