Cargando…

B cell dependence on and response to accessory signals in murine lupus strains

B cell hyperactivity, a feature common to all lupus-prone murine strains, may be caused by hyperresponsiveness to, overproduction of, or bypassing of certain signals required for B cell activation, proliferation, and differentiation. In this study, we have compared the responses of B cells from thre...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1983
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187057/
https://www.ncbi.nlm.nih.gov/pubmed/6406639
Descripción
Sumario:B cell hyperactivity, a feature common to all lupus-prone murine strains, may be caused by hyperresponsiveness to, overproduction of, or bypassing of certain signals required for B cell activation, proliferation, and differentiation. In this study, we have compared the responses of B cells from three lupus-prone strains of mice (BXSB males, MRL and NZB/W females) and normal strains in a number of assays for which two or more signals are required to obtain a response. In medium to low density cultures of B cells from BXSB and NZB/W but not MRL/l lupus mice, the cells' proliferation induced by bacterial lipopolysaccharide (LPS) or anti-mu antibody was much higher than that of B cells from normal controls. At low B cell density, polyclonal activation by these substances and subsequent Ig secretion were dependent on accessory signals present in supernatants of concanavalin A-treated normal lymphocytes (CAS) or on the MRL/l proliferating T cell- derived B cell differentiation factor (L-BCDF) in both lupus-prone and immunologically normal mice. However, the responses of B cells from BXSB and NZB/W, but not MRL/l, mice to these accessory signals were higher than those of normal mice. Ig synthesis by fresh B cells of BXSB and NZB/W mice cultured in the absence of mitogens but in the presence of CAS or L-BCDF was higher than by similar cells from other strains, suggesting an increased frequency of B cells activated in vivo in these two autoimmune strains of mice. The patterns of IgG subclass secretion in response to LPS (without added CAS or L-BCDF) were abnormal in all lupus strains, with a predominance of IgG2b and/or IgG2a and low levels of IgG3, contrary to normal B cells for which IgG3 synthesis predominated. However, IgG1 synthesis in vitro by autoimmune and normal B cells alike was highly dependent on T cell-derived soluble mediators. Antigen-specific responses to SRBC in vitro of B cells from all lupus strains, like those of B cells from normal strains, required a minimum of three signals (antigen, LPS, T cell-derived antigen nonspecific helper factors). Yet, once triggered, B cells of BXSB and NZB/W mice gave higher responses than those of the other strains. We conclude that B cells of lupus mice have signal requirements similar to those of normal mice. Nevertheless, B cells of BXSB and NZB/W, but not MRL/l, lupus mice hyperrespond or process some accessory signals abnormally.