Cargando…

Selective modification of a private I-A allo-stimulating determinant(s) upon association of antigen with an antigen-presenting cell

A large panel of alloreactive, interleukin 2 (IL-2)-producing T cell hybridomas was constructed from B10 alpha BALB/c primary mixed lymphocyte cultures (MLC). Functional hybrids had specificity for either I-Ad or I-Ed. These cells were used to probe determinants on Ia molecules in an attempt to dete...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187280/
https://www.ncbi.nlm.nih.gov/pubmed/6200566
_version_ 1782146137981976576
collection PubMed
description A large panel of alloreactive, interleukin 2 (IL-2)-producing T cell hybridomas was constructed from B10 alpha BALB/c primary mixed lymphocyte cultures (MLC). Functional hybrids had specificity for either I-Ad or I-Ed. These cells were used to probe determinants on Ia molecules in an attempt to detect molecular association between a nominal antigen and an Ia molecule on an antigen-presenting cell (APC). The response of a small number of these clones was significantly blocked by the addition of the Ir gene-controlled copolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) to culture. A comparison of the inhibited and uninhibited hybrids revealed an identical dose response curve. Further, both types of hybrids were activated by the same stimulator cell and frequently recognized the identical Ia molecule on that cell. Nevertheless, the inhibitory effect of GAT was localized to the stimulator cell and not to the T cell hybrids. All of the hybrids whose stimulation was blocked had specificity for the I-A molecule, which is the gene product known to control and restrict responsiveness to GAT. Further, only GT, but not a number of other related antigens, was also specifically inhibitory, which correlates with the known associational specificity of these antigens on an APC. Finally, the same stimulator cell could be shown to coordinately lose an allostimulatory determinant(s), while it was gaining an I-Ad plus GAT determinant(s). The implications of these findings on the nature of antigen-Ia association and on the role of polymorphic Ia determinants are discussed.
format Text
id pubmed-2187280
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21872802008-04-17 Selective modification of a private I-A allo-stimulating determinant(s) upon association of antigen with an antigen-presenting cell J Exp Med Articles A large panel of alloreactive, interleukin 2 (IL-2)-producing T cell hybridomas was constructed from B10 alpha BALB/c primary mixed lymphocyte cultures (MLC). Functional hybrids had specificity for either I-Ad or I-Ed. These cells were used to probe determinants on Ia molecules in an attempt to detect molecular association between a nominal antigen and an Ia molecule on an antigen-presenting cell (APC). The response of a small number of these clones was significantly blocked by the addition of the Ir gene-controlled copolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) to culture. A comparison of the inhibited and uninhibited hybrids revealed an identical dose response curve. Further, both types of hybrids were activated by the same stimulator cell and frequently recognized the identical Ia molecule on that cell. Nevertheless, the inhibitory effect of GAT was localized to the stimulator cell and not to the T cell hybrids. All of the hybrids whose stimulation was blocked had specificity for the I-A molecule, which is the gene product known to control and restrict responsiveness to GAT. Further, only GT, but not a number of other related antigens, was also specifically inhibitory, which correlates with the known associational specificity of these antigens on an APC. Finally, the same stimulator cell could be shown to coordinately lose an allostimulatory determinant(s), while it was gaining an I-Ad plus GAT determinant(s). The implications of these findings on the nature of antigen-Ia association and on the role of polymorphic Ia determinants are discussed. The Rockefeller University Press 1984-04-01 /pmc/articles/PMC2187280/ /pubmed/6200566 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Selective modification of a private I-A allo-stimulating determinant(s) upon association of antigen with an antigen-presenting cell
title Selective modification of a private I-A allo-stimulating determinant(s) upon association of antigen with an antigen-presenting cell
title_full Selective modification of a private I-A allo-stimulating determinant(s) upon association of antigen with an antigen-presenting cell
title_fullStr Selective modification of a private I-A allo-stimulating determinant(s) upon association of antigen with an antigen-presenting cell
title_full_unstemmed Selective modification of a private I-A allo-stimulating determinant(s) upon association of antigen with an antigen-presenting cell
title_short Selective modification of a private I-A allo-stimulating determinant(s) upon association of antigen with an antigen-presenting cell
title_sort selective modification of a private i-a allo-stimulating determinant(s) upon association of antigen with an antigen-presenting cell
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187280/
https://www.ncbi.nlm.nih.gov/pubmed/6200566