Cargando…

Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts

We have previously shown that increased nonenzymatic glycosylation occurs in peripheral nervous tissue of diabetic humans and animals, primarily on the PO-protein of peripheral nerve myelin. The pathophysiologic mechanism by which this biochemical alteration leads to myelin breakdown and removal is...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187417/
https://www.ncbi.nlm.nih.gov/pubmed/6736870
_version_ 1782146169995001856
collection PubMed
description We have previously shown that increased nonenzymatic glycosylation occurs in peripheral nervous tissue of diabetic humans and animals, primarily on the PO-protein of peripheral nerve myelin. The pathophysiologic mechanism by which this biochemical alteration leads to myelin breakdown and removal is not as yet understood. In the present study we show that advanced glycosylation end-product (AGE) adducts that form during long-term exposure of peripheral nerve myelin proteins to glucose in vitro and in vivo markedly alter the way in which myelin interacts with elicited macrophages. In this interaction, macrophages appear to specifically recognize AGEs on myelin, since AGE- BSA competes nearly as effectively as AGE-myelin, while neither unmodified BSA nor unmodified myelin compete. The failure of yeast mannan to interfere with macrophage recognition of AGE-myelin suggests that the mannose/fucose receptor does not mediate this process. Recognition of AGE-protein by macrophages is associated with endocytosis, as demonstrated by resistance of cell-associated radioactivity to removal by trypsin action, and by low temperature inhibition of ligand accumulation in the cellular fraction. 125I- labeled myelin that had been incubated in vitro with 50 mM glucose for 8 wk reached a steady state accumulation within thioglycolate-elicited macrophages that was five times greater than that of myelin incubated without glucose. Similarly, myelin isolated from rats having diabetes for 1.5-2.0 years duration had a steady state level that was 9 times greater than that of myelin from young rats, and 3.5 times greater than that of myelin from age-matched controls. In contrast, myelin isolated from rats having diabetes for 4-5 wk had the same degree of accumulation observed with myelin of age-matched normal rats. These data suggest that the amount of increased nonenzymatic glycosylation observed in the myelin of short-term diabetic rats had not yet resulted in the significant accumulation of AGE-myelin present both in vitro and in the long-term diabetic rats. The disappearance of acid-insoluble radioactivity from within the cells and the appearance of acid-soluble radioactivity released into the medium were very similar for the two groups, suggesting that the striking difference in accumulation seen between normal myelin and AGE-myelin is due primarily to increased uptake. Formation of irreversible AGE-adducts on myelin appears to promote the recognition and uptake of the modified myelin by macrophages. This interaction between AGE-myelin and macrophages may initiate or contribute to the segmental demyelination associated with diabetes and the normal aging of peripheral nerve.
format Text
id pubmed-2187417
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21874172008-04-17 Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts J Exp Med Articles We have previously shown that increased nonenzymatic glycosylation occurs in peripheral nervous tissue of diabetic humans and animals, primarily on the PO-protein of peripheral nerve myelin. The pathophysiologic mechanism by which this biochemical alteration leads to myelin breakdown and removal is not as yet understood. In the present study we show that advanced glycosylation end-product (AGE) adducts that form during long-term exposure of peripheral nerve myelin proteins to glucose in vitro and in vivo markedly alter the way in which myelin interacts with elicited macrophages. In this interaction, macrophages appear to specifically recognize AGEs on myelin, since AGE- BSA competes nearly as effectively as AGE-myelin, while neither unmodified BSA nor unmodified myelin compete. The failure of yeast mannan to interfere with macrophage recognition of AGE-myelin suggests that the mannose/fucose receptor does not mediate this process. Recognition of AGE-protein by macrophages is associated with endocytosis, as demonstrated by resistance of cell-associated radioactivity to removal by trypsin action, and by low temperature inhibition of ligand accumulation in the cellular fraction. 125I- labeled myelin that had been incubated in vitro with 50 mM glucose for 8 wk reached a steady state accumulation within thioglycolate-elicited macrophages that was five times greater than that of myelin incubated without glucose. Similarly, myelin isolated from rats having diabetes for 1.5-2.0 years duration had a steady state level that was 9 times greater than that of myelin from young rats, and 3.5 times greater than that of myelin from age-matched controls. In contrast, myelin isolated from rats having diabetes for 4-5 wk had the same degree of accumulation observed with myelin of age-matched normal rats. These data suggest that the amount of increased nonenzymatic glycosylation observed in the myelin of short-term diabetic rats had not yet resulted in the significant accumulation of AGE-myelin present both in vitro and in the long-term diabetic rats. The disappearance of acid-insoluble radioactivity from within the cells and the appearance of acid-soluble radioactivity released into the medium were very similar for the two groups, suggesting that the striking difference in accumulation seen between normal myelin and AGE-myelin is due primarily to increased uptake. Formation of irreversible AGE-adducts on myelin appears to promote the recognition and uptake of the modified myelin by macrophages. This interaction between AGE-myelin and macrophages may initiate or contribute to the segmental demyelination associated with diabetes and the normal aging of peripheral nerve. The Rockefeller University Press 1984-07-01 /pmc/articles/PMC2187417/ /pubmed/6736870 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts
title Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts
title_full Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts
title_fullStr Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts
title_full_unstemmed Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts
title_short Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts
title_sort accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187417/
https://www.ncbi.nlm.nih.gov/pubmed/6736870