Cargando…
Bone marrow graft rejection as a function of antibody-directed natural killer cells
There is conclusive evidence that acute bone marrow transplant rejection in lethally irradiated mice is caused by natural killer (NK) cells. The rejection of marrow allografts is exquisitely specific and is controlled by antigenic determinants encoded in or near the H-2 gene complex. The specificity...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1985
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187585/ https://www.ncbi.nlm.nih.gov/pubmed/2579185 |
Sumario: | There is conclusive evidence that acute bone marrow transplant rejection in lethally irradiated mice is caused by natural killer (NK) cells. The rejection of marrow allografts is exquisitely specific and is controlled by antigenic determinants encoded in or near the H-2 gene complex. The specificity of in vivo marrow graft rejection contrasts with the in vitro specificity pattern of NK cells in cytotoxicity assays. We therefore examined how NK cells cause H-2-specific marrow graft rejection in vivo. Several experimental approaches are presented that suggest that natural antibody, present in responder strains of mice, specifically directs NK cells in an antibody-dependent cytolytic and/or cytostatic reaction, resulting in marrow graft rejection. The following evidence for this mechanism is documented. The ability to reject a marrow graft can be passively transferred by serum from responder to allogeneic nonresponder mice and the specificity of rejection can be mapped within the H-2 region. Serum-induced marrow graft rejection is abrogated following depletion of immunoglobulin, and the serum of responder mice is able to induce a specific antibody- dependent cytotoxic reaction in vitro. |
---|