Cargando…
Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2
Incubation of resting lymphoid cells with recombinant interleukin 2 (IL- 2) in vitro leads to the generation of lymphokine activated killer (LAK) cells capable of lysing fresh tumor cell suspensions in short- term chromium-release assays. Our previous studies (7) have demonstrated that the injection...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1985
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187617/ https://www.ncbi.nlm.nih.gov/pubmed/3886826 |
_version_ | 1782146216674459648 |
---|---|
collection | PubMed |
description | Incubation of resting lymphoid cells with recombinant interleukin 2 (IL- 2) in vitro leads to the generation of lymphokine activated killer (LAK) cells capable of lysing fresh tumor cell suspensions in short- term chromium-release assays. Our previous studies (7) have demonstrated that the injection of LAK cells plus low doses of recombinant IL-2 were capable of inhibiting the growth of pulmonary metastases. We have now explored the ability of high doses of recombinant IL-2, administered systemically, to generate LAK cells in vivo, and to mediate antitumor effects directly. Administration of increasing doses of recombinant IL-2 intraperitoneally resulted in the generation of LAK cells in the spleens of recipient mice. Doses of 100,000 U recombinant IL-2 administered intraperitoneally approximately every 8 h for 5 d were capable of dramatically inhibiting established 3- d pulmonary metastases from the MCA-105 and MCA-106 syngeneic sarcomas and the syngeneic B16 melanoma in C57BL/6 mice. Grossly visible metastases present at 10 d after tumor injection also underwent regression following IL-2 therapy. Surprisingly, established 10 d pulmonary metastases were more susceptible to the effects of IL-2 than were the smaller 3 d pulmonary metastases. All antitumor effects of the systemic administration of recombinant IL-2 were eliminated if mice received prior treatment with 500 rad total body irradiation. The administration of high doses of recombinant IL-2 was also capable of inhibiting the growth of 3-d established subcutaneous tumors from the MCA-105 sarcoma, and of mediating the inhibition of growth and regression of established palpable subcutaneous MCA-105 sarcomas. Lymphocytes, which appeared morphologically to be activated, were present at the site of regressing tumor, and it appears that the mechanism of the antitumor effect of recombinant IL-2 administered systemically is via the generation of LAK cells in vivo, although this hypothesis remains to be proven. The ready availability of high doses of recombinant human IL-2, and the demonstration of antitumor effects seen in animal models have led us to the initiation of the clinical trials of recombinant IL-2 in humans. |
format | Text |
id | pubmed-2187617 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1985 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21876172008-04-17 Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2 J Exp Med Articles Incubation of resting lymphoid cells with recombinant interleukin 2 (IL- 2) in vitro leads to the generation of lymphokine activated killer (LAK) cells capable of lysing fresh tumor cell suspensions in short- term chromium-release assays. Our previous studies (7) have demonstrated that the injection of LAK cells plus low doses of recombinant IL-2 were capable of inhibiting the growth of pulmonary metastases. We have now explored the ability of high doses of recombinant IL-2, administered systemically, to generate LAK cells in vivo, and to mediate antitumor effects directly. Administration of increasing doses of recombinant IL-2 intraperitoneally resulted in the generation of LAK cells in the spleens of recipient mice. Doses of 100,000 U recombinant IL-2 administered intraperitoneally approximately every 8 h for 5 d were capable of dramatically inhibiting established 3- d pulmonary metastases from the MCA-105 and MCA-106 syngeneic sarcomas and the syngeneic B16 melanoma in C57BL/6 mice. Grossly visible metastases present at 10 d after tumor injection also underwent regression following IL-2 therapy. Surprisingly, established 10 d pulmonary metastases were more susceptible to the effects of IL-2 than were the smaller 3 d pulmonary metastases. All antitumor effects of the systemic administration of recombinant IL-2 were eliminated if mice received prior treatment with 500 rad total body irradiation. The administration of high doses of recombinant IL-2 was also capable of inhibiting the growth of 3-d established subcutaneous tumors from the MCA-105 sarcoma, and of mediating the inhibition of growth and regression of established palpable subcutaneous MCA-105 sarcomas. Lymphocytes, which appeared morphologically to be activated, were present at the site of regressing tumor, and it appears that the mechanism of the antitumor effect of recombinant IL-2 administered systemically is via the generation of LAK cells in vivo, although this hypothesis remains to be proven. The ready availability of high doses of recombinant human IL-2, and the demonstration of antitumor effects seen in animal models have led us to the initiation of the clinical trials of recombinant IL-2 in humans. The Rockefeller University Press 1985-05-01 /pmc/articles/PMC2187617/ /pubmed/3886826 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2 |
title | Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2 |
title_full | Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2 |
title_fullStr | Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2 |
title_full_unstemmed | Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2 |
title_short | Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2 |
title_sort | regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2 |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187617/ https://www.ncbi.nlm.nih.gov/pubmed/3886826 |