Cargando…
Molecular analysis of T cell receptor (Ti) variable region (V) gene expression. Evidence that a single Ti beta V gene family can be used in formation of V domains on phenotypically and functionally diverse T cell populations
We examine the rules governing Ti beta variable (V) gene segment usage in the formation of T cell antigen-MHC receptors in diverse regulatory and effector T lymphoid subpopulations. To this end, a single Ti beta V gene family and its products were analyzed. A monoclonal antibody, termed anti-Ti3A, w...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1985
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187627/ https://www.ncbi.nlm.nih.gov/pubmed/2409198 |
Sumario: | We examine the rules governing Ti beta variable (V) gene segment usage in the formation of T cell antigen-MHC receptors in diverse regulatory and effector T lymphoid subpopulations. To this end, a single Ti beta V gene family and its products were analyzed. A monoclonal antibody, termed anti-Ti3A, which was shown to be reactive with an epitope encoded by members of the REX cell line Ti beta V gene family, and which was expressed on 2% of human T lymphocytes was used in selection of clones from unprimed peripheral T lymphocytes. Both T4+, as well as T8+ T cell clones with inducer, suppressor, and/or cytotoxic function were defined. Southern analysis, isoelectric focusing and two- dimensional peptide mapping indicated that individual members of the REX V gene family were linked to different Ti beta diversity and/or joining and constant region segments. Moreover, the Ti alpha chains of such clones were distinct. These results imply that Ti beta V gene usage is not restricted to any functionally or phenotypically defined T cell subsets, and there is presumably little, if any, restriction on the mechanisms that generate combinational, junctional or chain association-mediated diversity. |
---|