Cargando…
Analysis of major histocompatibility complex haplotypes of t- chromosomes reveals that the majority of diversity is generated by recombination
t-chromosomes are natural polymorphisms in feral populations of mice that are thought to be descended from a single ancestral chromosome. They carry an inversion of at least 10 cM surrounding the major histocompatibility complex (MHC) that effectively prevents recombination between a t-bearing chrom...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1985
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187703/ https://www.ncbi.nlm.nih.gov/pubmed/2409212 |
_version_ | 1782146236472623104 |
---|---|
collection | PubMed |
description | t-chromosomes are natural polymorphisms in feral populations of mice that are thought to be descended from a single ancestral chromosome. They carry an inversion of at least 10 cM surrounding the major histocompatibility complex (MHC) that effectively prevents recombination between a t-bearing chromosome and wild type chromosomes. However, on the rare occasion when two different t-chromosomes meet in a wild female, recombination occurs at an apparently normal rate. Since they contain the highly polymorphic MHC, their limited origin and restricted chances for recombination make t-chromosomes a valuable tool for studying the relative contributions of mutation and recombination to the generation of diversity. Using 13 different serological reagents to class I antigens, and studying restriction enzyme polymorphisms detected with three molecular probes for class II genes examined with three endonucleases, we present data indicating that the major factor responsible for the diversity of class I antigens is recombination, but that for class II genes, mutation must play an important role in addition to recombination. |
format | Text |
id | pubmed-2187703 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1985 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21877032008-04-17 Analysis of major histocompatibility complex haplotypes of t- chromosomes reveals that the majority of diversity is generated by recombination J Exp Med Articles t-chromosomes are natural polymorphisms in feral populations of mice that are thought to be descended from a single ancestral chromosome. They carry an inversion of at least 10 cM surrounding the major histocompatibility complex (MHC) that effectively prevents recombination between a t-bearing chromosome and wild type chromosomes. However, on the rare occasion when two different t-chromosomes meet in a wild female, recombination occurs at an apparently normal rate. Since they contain the highly polymorphic MHC, their limited origin and restricted chances for recombination make t-chromosomes a valuable tool for studying the relative contributions of mutation and recombination to the generation of diversity. Using 13 different serological reagents to class I antigens, and studying restriction enzyme polymorphisms detected with three molecular probes for class II genes examined with three endonucleases, we present data indicating that the major factor responsible for the diversity of class I antigens is recombination, but that for class II genes, mutation must play an important role in addition to recombination. The Rockefeller University Press 1985-07-01 /pmc/articles/PMC2187703/ /pubmed/2409212 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Analysis of major histocompatibility complex haplotypes of t- chromosomes reveals that the majority of diversity is generated by recombination |
title | Analysis of major histocompatibility complex haplotypes of t- chromosomes reveals that the majority of diversity is generated by recombination |
title_full | Analysis of major histocompatibility complex haplotypes of t- chromosomes reveals that the majority of diversity is generated by recombination |
title_fullStr | Analysis of major histocompatibility complex haplotypes of t- chromosomes reveals that the majority of diversity is generated by recombination |
title_full_unstemmed | Analysis of major histocompatibility complex haplotypes of t- chromosomes reveals that the majority of diversity is generated by recombination |
title_short | Analysis of major histocompatibility complex haplotypes of t- chromosomes reveals that the majority of diversity is generated by recombination |
title_sort | analysis of major histocompatibility complex haplotypes of t- chromosomes reveals that the majority of diversity is generated by recombination |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187703/ https://www.ncbi.nlm.nih.gov/pubmed/2409212 |