Cargando…

Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long- term bone marrow cultures

A new panel of mAbs was prepared to a stromal cell line known to support lymphocytes in Whitlock-Witte type long-term bone marrow cultures. These antibodies were then screened with a cell adhesion assay and four were selected that inhibited the binding of B lineage cells to stromal cell monolayers....

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187725/
https://www.ncbi.nlm.nih.gov/pubmed/2406365
Descripción
Sumario:A new panel of mAbs was prepared to a stromal cell line known to support lymphocytes in Whitlock-Witte type long-term bone marrow cultures. These antibodies were then screened with a cell adhesion assay and four were selected that inhibited the binding of B lineage cells to stromal cell monolayers. Immunofluorescent and biochemical analyses revealed that these new antibodies detected epitopes of the previously described Pgp-1/CD44 antigen complex. Addition of Pgp-1/CD44 antibodies to Dexter-type long-term bone marrow cultures completely prevented emergence of myeloid cells and they also blocked lymphocyte growth in Whitlock-Witte type cultures. mAbs MEL-14, LFA-1, and CD45R did not inhibit under the same conditions and there was no apparent relationship to Ig isotype. Adherent layers in treated cultures were not unusual in terms of morphology and the antibodies did not affect factor-dependent replication of lymphoid or myeloid progenitor cells. Therefore, the mechanism of inhibition may not involve direct toxicity to precursors or microenvironmental elements. Previous studies in humans and mice have implicated Pgp-1/CD44-related glycoproteins in the migration of peripheral lymphoid cells, as well as interactions of cells with the extracellular matrix. These findings suggest that they may also be critical for formation of lymphoid and myeloid cells within bone marrow.