Cargando…

Rapid polymerization of Entamoeba histolytica actin induced by interaction with target cells

Within 5 s of challenge of Entamoeba histolytica trophozoites with red blood cells (RBC), attachment and deformation of target cells occurred at multiple sites on the amoeba surface. Many trophozoite-target interfaces were outlined with a ring of polymerized amoeba actin, revealed by rhodamine-phall...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1985
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187747/
https://www.ncbi.nlm.nih.gov/pubmed/2862217
_version_ 1782146246554681344
collection PubMed
description Within 5 s of challenge of Entamoeba histolytica trophozoites with red blood cells (RBC), attachment and deformation of target cells occurred at multiple sites on the amoeba surface. Many trophozoite-target interfaces were outlined with a ring of polymerized amoeba actin, revealed by rhodamine-phalloidin staining of glutaraldehyde-fixed and Triton-X 100-extracted cells. The beginnings of phagocytic pseudopods rimmed many targets. The phagocytic membrane and underlying actin network grew uniformly about a target cell, which became dramatically elongated and constricted, sometimes severed, as it entered the amoeba. Total engulfment of RBC targets occurred within 10 s. By methanol extraction and spectrofluorimetric measurement of bound rhodamine- phalloidin we were able to quantitate polymerized actin in amoebae. Interaction with target cells was accompanied by a net increase of up to twofold in the average polymerized actin content of trophozoites. This reached a maximum during the period of most active phagocytosis (4 min after challenge at 25 degrees C), and declined as phagocytic activity diminished (8-16 min). Challenge with latex beads of similar size and number, which E. histolytica phagocytized more slowly than RBC, induced neither a detectable increase in polymerized actin content nor appearance of polymerized actin at the contact interface. RBC inhibited phagocytosis of latex beads, but the reverse did not occur. The results demonstrate a rapid, recognition-specific stimulation of reorganization of the actin cytoskeleton of E. histolytica induced by binding to target cells. Vigorous phagocytic activity is frequently an immediate consequence of cell-cell contact, which emphasizes the importance of this process in the contact-mediated attack mechanism of this pathogen. The quantitative assay of polymerized actin may be useful in further studies of this mechanism.
format Text
id pubmed-2187747
institution National Center for Biotechnology Information
language English
publishDate 1985
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21877472008-04-17 Rapid polymerization of Entamoeba histolytica actin induced by interaction with target cells J Exp Med Articles Within 5 s of challenge of Entamoeba histolytica trophozoites with red blood cells (RBC), attachment and deformation of target cells occurred at multiple sites on the amoeba surface. Many trophozoite-target interfaces were outlined with a ring of polymerized amoeba actin, revealed by rhodamine-phalloidin staining of glutaraldehyde-fixed and Triton-X 100-extracted cells. The beginnings of phagocytic pseudopods rimmed many targets. The phagocytic membrane and underlying actin network grew uniformly about a target cell, which became dramatically elongated and constricted, sometimes severed, as it entered the amoeba. Total engulfment of RBC targets occurred within 10 s. By methanol extraction and spectrofluorimetric measurement of bound rhodamine- phalloidin we were able to quantitate polymerized actin in amoebae. Interaction with target cells was accompanied by a net increase of up to twofold in the average polymerized actin content of trophozoites. This reached a maximum during the period of most active phagocytosis (4 min after challenge at 25 degrees C), and declined as phagocytic activity diminished (8-16 min). Challenge with latex beads of similar size and number, which E. histolytica phagocytized more slowly than RBC, induced neither a detectable increase in polymerized actin content nor appearance of polymerized actin at the contact interface. RBC inhibited phagocytosis of latex beads, but the reverse did not occur. The results demonstrate a rapid, recognition-specific stimulation of reorganization of the actin cytoskeleton of E. histolytica induced by binding to target cells. Vigorous phagocytic activity is frequently an immediate consequence of cell-cell contact, which emphasizes the importance of this process in the contact-mediated attack mechanism of this pathogen. The quantitative assay of polymerized actin may be useful in further studies of this mechanism. The Rockefeller University Press 1985-08-01 /pmc/articles/PMC2187747/ /pubmed/2862217 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Rapid polymerization of Entamoeba histolytica actin induced by interaction with target cells
title Rapid polymerization of Entamoeba histolytica actin induced by interaction with target cells
title_full Rapid polymerization of Entamoeba histolytica actin induced by interaction with target cells
title_fullStr Rapid polymerization of Entamoeba histolytica actin induced by interaction with target cells
title_full_unstemmed Rapid polymerization of Entamoeba histolytica actin induced by interaction with target cells
title_short Rapid polymerization of Entamoeba histolytica actin induced by interaction with target cells
title_sort rapid polymerization of entamoeba histolytica actin induced by interaction with target cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187747/
https://www.ncbi.nlm.nih.gov/pubmed/2862217