Cargando…

Incorporation, distribution, and turnover of arachidonic acid within membrane phospholipids of B220+ T cells from autoimmune-prone MRL- lpr/lpr mice

The metabolism of AA-containing phosphoglycerides within T cell membranes leads to the generation of second messengers that appear to play a crucial role in transmembrane signal transduction. To test the hypothesis that aberrations in the movement of arachidonoyl- phospholipids are associated with a...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187770/
https://www.ncbi.nlm.nih.gov/pubmed/2106567
_version_ 1782146251913953280
collection PubMed
description The metabolism of AA-containing phosphoglycerides within T cell membranes leads to the generation of second messengers that appear to play a crucial role in transmembrane signal transduction. To test the hypothesis that aberrations in the movement of arachidonoyl- phospholipids are associated with and may potentially contribute to abnormal T cell function, the incorporation, distribution, and turnover of AA within the membrane glycerolipids of cells that are known to exhibit immunoregulatory disturbances was examined. Thy-1+, Ly-1+, L3T4- , Lyt-2-, B220+ T cells from autoimmune MRL-lpr/lpr mice were used as the cellular model. In contrast to control lymph node T cells, which preferentially incorporate labeled AA into phosphatidylcholine (PC), B220+ T cells displayed a predilection for distributing [3H]arachidonate into phosphatidylinositol (PI). The arachidonoyl- phospholipid pools were normal in B220+ T cells. The constitutive turnover of [3H]arachidonoyl-PI was significantly enhanced and that of [3H]arachidonate-PC substantially reduced in B220+ T cell compared with control cells. Using membrane homogenates B220+ T cells demonstrated a functional increase in the levels of lyso-PI. Intact B220+ T cells prelabeled with [3H]myoinositol and cultured in the absence of stimulation with exogenous antigens or mitogens, exhibited increased production of lyso-PI. The data indicate that the preferential formation of [3H]arachidonoyl-PI in B220+ T cells is the result of greatly increased, constitutive PI turnover that appears to be due to a membrane phospholipase A2 activity. It remains possible that disturbances in the movement of arachidonate within phospholipids of B220+ T cells play a role in the expression of aberrant immunological activity.
format Text
id pubmed-2187770
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21877702008-04-17 Incorporation, distribution, and turnover of arachidonic acid within membrane phospholipids of B220+ T cells from autoimmune-prone MRL- lpr/lpr mice J Exp Med Articles The metabolism of AA-containing phosphoglycerides within T cell membranes leads to the generation of second messengers that appear to play a crucial role in transmembrane signal transduction. To test the hypothesis that aberrations in the movement of arachidonoyl- phospholipids are associated with and may potentially contribute to abnormal T cell function, the incorporation, distribution, and turnover of AA within the membrane glycerolipids of cells that are known to exhibit immunoregulatory disturbances was examined. Thy-1+, Ly-1+, L3T4- , Lyt-2-, B220+ T cells from autoimmune MRL-lpr/lpr mice were used as the cellular model. In contrast to control lymph node T cells, which preferentially incorporate labeled AA into phosphatidylcholine (PC), B220+ T cells displayed a predilection for distributing [3H]arachidonate into phosphatidylinositol (PI). The arachidonoyl- phospholipid pools were normal in B220+ T cells. The constitutive turnover of [3H]arachidonoyl-PI was significantly enhanced and that of [3H]arachidonate-PC substantially reduced in B220+ T cell compared with control cells. Using membrane homogenates B220+ T cells demonstrated a functional increase in the levels of lyso-PI. Intact B220+ T cells prelabeled with [3H]myoinositol and cultured in the absence of stimulation with exogenous antigens or mitogens, exhibited increased production of lyso-PI. The data indicate that the preferential formation of [3H]arachidonoyl-PI in B220+ T cells is the result of greatly increased, constitutive PI turnover that appears to be due to a membrane phospholipase A2 activity. It remains possible that disturbances in the movement of arachidonate within phospholipids of B220+ T cells play a role in the expression of aberrant immunological activity. The Rockefeller University Press 1990-03-01 /pmc/articles/PMC2187770/ /pubmed/2106567 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Incorporation, distribution, and turnover of arachidonic acid within membrane phospholipids of B220+ T cells from autoimmune-prone MRL- lpr/lpr mice
title Incorporation, distribution, and turnover of arachidonic acid within membrane phospholipids of B220+ T cells from autoimmune-prone MRL- lpr/lpr mice
title_full Incorporation, distribution, and turnover of arachidonic acid within membrane phospholipids of B220+ T cells from autoimmune-prone MRL- lpr/lpr mice
title_fullStr Incorporation, distribution, and turnover of arachidonic acid within membrane phospholipids of B220+ T cells from autoimmune-prone MRL- lpr/lpr mice
title_full_unstemmed Incorporation, distribution, and turnover of arachidonic acid within membrane phospholipids of B220+ T cells from autoimmune-prone MRL- lpr/lpr mice
title_short Incorporation, distribution, and turnover of arachidonic acid within membrane phospholipids of B220+ T cells from autoimmune-prone MRL- lpr/lpr mice
title_sort incorporation, distribution, and turnover of arachidonic acid within membrane phospholipids of b220+ t cells from autoimmune-prone mrl- lpr/lpr mice
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187770/
https://www.ncbi.nlm.nih.gov/pubmed/2106567