Cargando…

Major histocompatibility complex class II-restricted antigen presentation across a species barrier: conservation of restriction determinants in evolution

The existence of at least three alleles of the HLA-DRB3 gene within the human population is evident. These alleles express DRw52 determinants and react with monoclonal antibody (mAb) 7.3.19.1. The polymorphic epitope recognized by 7.3.19.1 is not only present on human cells but is also expressed on...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188146/
https://www.ncbi.nlm.nih.gov/pubmed/1694228
_version_ 1782146339740581888
collection PubMed
description The existence of at least three alleles of the HLA-DRB3 gene within the human population is evident. These alleles express DRw52 determinants and react with monoclonal antibody (mAb) 7.3.19.1. The polymorphic epitope recognized by 7.3.19.1 is not only present on human cells but is also expressed on chimpanzee (Pan troglodytes) class II-positive cells. The 7.3.19.1 determinant already existed before speciation of man and chimpanzee, and is at least 5,000,000 yr old. Two-dimensional gel electrophoresis demonstrated that the various HLA- and Patr-DRw52 molecules that are reactive with 7.3.19.1 exhibit isoelectric point differences due to primary amino acid heterogeneity, as was confirmed by sequencing data. Sequence comparison allowed us to map the binding site of mAb 7.3.19.1 to the alpha helix of the major histocompatibility complex (MHC) class II DRB1 domain surrounding the antigen-binding cleft. Despite MHC sequence variation, chimpanzee antigen-presenting cells can present antigen (purified protein derivative) to human T cell lines and vice versa. Only the HLA- and Patr-DRw52 molecules were shown to function as restriction elements for antigen presentation across this species barrier. It is concluded that these particular restriction determinants probably have been conserved in evolution. The HLA- and Patr-DRw52 molecules represent alleles displaying polymorphism that has been selected for in evolution. Such "biomutants" may thus be more useful to study the biological significance of MHC molecules than MHC variants that have been generated by in vitro mutagenesis experiments.
format Text
id pubmed-2188146
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21881462008-04-17 Major histocompatibility complex class II-restricted antigen presentation across a species barrier: conservation of restriction determinants in evolution J Exp Med Articles The existence of at least three alleles of the HLA-DRB3 gene within the human population is evident. These alleles express DRw52 determinants and react with monoclonal antibody (mAb) 7.3.19.1. The polymorphic epitope recognized by 7.3.19.1 is not only present on human cells but is also expressed on chimpanzee (Pan troglodytes) class II-positive cells. The 7.3.19.1 determinant already existed before speciation of man and chimpanzee, and is at least 5,000,000 yr old. Two-dimensional gel electrophoresis demonstrated that the various HLA- and Patr-DRw52 molecules that are reactive with 7.3.19.1 exhibit isoelectric point differences due to primary amino acid heterogeneity, as was confirmed by sequencing data. Sequence comparison allowed us to map the binding site of mAb 7.3.19.1 to the alpha helix of the major histocompatibility complex (MHC) class II DRB1 domain surrounding the antigen-binding cleft. Despite MHC sequence variation, chimpanzee antigen-presenting cells can present antigen (purified protein derivative) to human T cell lines and vice versa. Only the HLA- and Patr-DRw52 molecules were shown to function as restriction elements for antigen presentation across this species barrier. It is concluded that these particular restriction determinants probably have been conserved in evolution. The HLA- and Patr-DRw52 molecules represent alleles displaying polymorphism that has been selected for in evolution. Such "biomutants" may thus be more useful to study the biological significance of MHC molecules than MHC variants that have been generated by in vitro mutagenesis experiments. The Rockefeller University Press 1990-07-01 /pmc/articles/PMC2188146/ /pubmed/1694228 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Major histocompatibility complex class II-restricted antigen presentation across a species barrier: conservation of restriction determinants in evolution
title Major histocompatibility complex class II-restricted antigen presentation across a species barrier: conservation of restriction determinants in evolution
title_full Major histocompatibility complex class II-restricted antigen presentation across a species barrier: conservation of restriction determinants in evolution
title_fullStr Major histocompatibility complex class II-restricted antigen presentation across a species barrier: conservation of restriction determinants in evolution
title_full_unstemmed Major histocompatibility complex class II-restricted antigen presentation across a species barrier: conservation of restriction determinants in evolution
title_short Major histocompatibility complex class II-restricted antigen presentation across a species barrier: conservation of restriction determinants in evolution
title_sort major histocompatibility complex class ii-restricted antigen presentation across a species barrier: conservation of restriction determinants in evolution
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188146/
https://www.ncbi.nlm.nih.gov/pubmed/1694228