Cargando…

Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation

We have shown that lymphocytes stimulated by PHA produce colony-forming unit of granulocyte/monocyte (CFU-GM)-stimulating and -inhibiting activities, IFN-gamma, and lymphotoxin (LT). IFN-gamma is necessary for inhibition of CFU-GM by PHA-conditioned medium (CM), as shown by experiments in which remo...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188207/
https://www.ncbi.nlm.nih.gov/pubmed/3088195
_version_ 1782146354113413120
collection PubMed
description We have shown that lymphocytes stimulated by PHA produce colony-forming unit of granulocyte/monocyte (CFU-GM)-stimulating and -inhibiting activities, IFN-gamma, and lymphotoxin (LT). IFN-gamma is necessary for inhibition of CFU-GM by PHA-conditioned medium (CM), as shown by experiments in which removal of IFN-gamma from PHA-CM abrogated inhibition. However, experiments in which rIFN-gamma was added to IFN- gamma-depleted PHA-CM revealed the presence, in PHA-CM, of other factors that act in synergy with IFN-gamma to inhibit CFU-GM. Fractionation of PHA-CM on a Sephadex G-100 column was used to separate IFN-gamma and LT. Colony-inhibiting activity was eluted in fractions that contained both IFN-gamma and LT activities, identifying LT as a factor present in PHA-CM that synergizes with IFN-gamma to inhibit CFU- GM. Treatment of PHA-CM with mAb against either IFN-gamma or LT completely abrogated the colony-inhibiting activity, demonstrating a requirement for both lymphokines in PHA-CM-induced inhibition of CFU- GM. Experiments using rIFN-gamma and preparations of purified LT confirmed that neither lymphokine alone, when added to bone marrow cells at the concentrations present in PHA-CM, strongly inhibited day 7 or day 14 CFU-GM, but that the two lymphokines, added together, behaved synergistically to inhibit CFU-GM by up to 70%. The inhibition observed using purified preparations of lymphokines shows that synergy between IFN-gamma and LT is sufficient to explain PHA-CM-induced inhibition of CFU-GM. Our findings suggest that activated T cells regulate hematopoiesis through the release of inhibitory as well as stimulatory factors, and that the simultaneous production of IFN-gamma and LT may represent a mechanism of suppression of hematopoiesis in the cases of bone marrow failure associated with the presence of activated T cells.
format Text
id pubmed-2188207
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21882072008-04-17 Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation J Exp Med Articles We have shown that lymphocytes stimulated by PHA produce colony-forming unit of granulocyte/monocyte (CFU-GM)-stimulating and -inhibiting activities, IFN-gamma, and lymphotoxin (LT). IFN-gamma is necessary for inhibition of CFU-GM by PHA-conditioned medium (CM), as shown by experiments in which removal of IFN-gamma from PHA-CM abrogated inhibition. However, experiments in which rIFN-gamma was added to IFN- gamma-depleted PHA-CM revealed the presence, in PHA-CM, of other factors that act in synergy with IFN-gamma to inhibit CFU-GM. Fractionation of PHA-CM on a Sephadex G-100 column was used to separate IFN-gamma and LT. Colony-inhibiting activity was eluted in fractions that contained both IFN-gamma and LT activities, identifying LT as a factor present in PHA-CM that synergizes with IFN-gamma to inhibit CFU- GM. Treatment of PHA-CM with mAb against either IFN-gamma or LT completely abrogated the colony-inhibiting activity, demonstrating a requirement for both lymphokines in PHA-CM-induced inhibition of CFU- GM. Experiments using rIFN-gamma and preparations of purified LT confirmed that neither lymphokine alone, when added to bone marrow cells at the concentrations present in PHA-CM, strongly inhibited day 7 or day 14 CFU-GM, but that the two lymphokines, added together, behaved synergistically to inhibit CFU-GM by up to 70%. The inhibition observed using purified preparations of lymphokines shows that synergy between IFN-gamma and LT is sufficient to explain PHA-CM-induced inhibition of CFU-GM. Our findings suggest that activated T cells regulate hematopoiesis through the release of inhibitory as well as stimulatory factors, and that the simultaneous production of IFN-gamma and LT may represent a mechanism of suppression of hematopoiesis in the cases of bone marrow failure associated with the presence of activated T cells. The Rockefeller University Press 1986-07-01 /pmc/articles/PMC2188207/ /pubmed/3088195 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation
title Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation
title_full Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation
title_fullStr Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation
title_full_unstemmed Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation
title_short Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation
title_sort gamma interferon and lymphotoxin, released by activated t cells, synergize to inhibit granulocyte/monocyte colony formation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188207/
https://www.ncbi.nlm.nih.gov/pubmed/3088195