Cargando…

Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids

Decay-accelerating factor (DAF) is a 70 kD membrane regulatory protein that prevents the activation of autologous complement on cell surfaces. Using immunohistochemical methods and a radioimmunometric assay based on mAbs to DAF, we found large amounts of membrane-associated DAF antigen on the epithe...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188295/
https://www.ncbi.nlm.nih.gov/pubmed/2434600
_version_ 1782146374701154304
collection PubMed
description Decay-accelerating factor (DAF) is a 70 kD membrane regulatory protein that prevents the activation of autologous complement on cell surfaces. Using immunohistochemical methods and a radioimmunometric assay based on mAbs to DAF, we found large amounts of membrane-associated DAF antigen on the epithelial surface of cornea, conjunctiva, oral and gastrointestinal mucosa, exocrine glands, renal tubules, ureter and bladder, cervical and uterine mucosa, and pleural, pericardial and synovial serosa. Additionally, we detected soluble DAF antigen in plasma, tears, saliva, and urine, as well as in synovial and cerebrospinal fluids. While plasma, tear, and saliva DAF are larger than erythrocyte (Ehu) membrane DAF by Western blot analysis, urine DAF is slightly smaller (67,000) in Mr. Unlike purified Ehu DAF, however, urine DAF is unable to incorporate into the membrane of red cells. Although its inhibitory activity on the complement enzyme C3-convertase is lower than that of Ehu DAF, it is comparable to that of serum C4 binding protein (C4bp). Biosynthetic studies using cultured foreskin epithelium and Hela cells disclosed DAF levels (approximately 2 X 10(5) molecules/cell) exceeding those on blood cells. In addition, these studies revealed the synthesis of two DAF species, one with apparent Mr corresponding to that of epithelial cell membrane DAF and the other to urine DAF, suggesting that the urine DAF variant arises from adjacent epithelium. The function of DAF in body fluids is unknown, but the observation that urine DAF has C4bp-(or factor H-)like activity shows that it could inhibit the fluid phase activation of the cascade.
format Text
id pubmed-2188295
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21882952008-04-17 Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids J Exp Med Articles Decay-accelerating factor (DAF) is a 70 kD membrane regulatory protein that prevents the activation of autologous complement on cell surfaces. Using immunohistochemical methods and a radioimmunometric assay based on mAbs to DAF, we found large amounts of membrane-associated DAF antigen on the epithelial surface of cornea, conjunctiva, oral and gastrointestinal mucosa, exocrine glands, renal tubules, ureter and bladder, cervical and uterine mucosa, and pleural, pericardial and synovial serosa. Additionally, we detected soluble DAF antigen in plasma, tears, saliva, and urine, as well as in synovial and cerebrospinal fluids. While plasma, tear, and saliva DAF are larger than erythrocyte (Ehu) membrane DAF by Western blot analysis, urine DAF is slightly smaller (67,000) in Mr. Unlike purified Ehu DAF, however, urine DAF is unable to incorporate into the membrane of red cells. Although its inhibitory activity on the complement enzyme C3-convertase is lower than that of Ehu DAF, it is comparable to that of serum C4 binding protein (C4bp). Biosynthetic studies using cultured foreskin epithelium and Hela cells disclosed DAF levels (approximately 2 X 10(5) molecules/cell) exceeding those on blood cells. In addition, these studies revealed the synthesis of two DAF species, one with apparent Mr corresponding to that of epithelial cell membrane DAF and the other to urine DAF, suggesting that the urine DAF variant arises from adjacent epithelium. The function of DAF in body fluids is unknown, but the observation that urine DAF has C4bp-(or factor H-)like activity shows that it could inhibit the fluid phase activation of the cascade. The Rockefeller University Press 1987-03-01 /pmc/articles/PMC2188295/ /pubmed/2434600 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids
title Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids
title_full Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids
title_fullStr Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids
title_full_unstemmed Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids
title_short Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids
title_sort identification of the complement decay-accelerating factor (daf) on epithelium and glandular cells and in body fluids
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188295/
https://www.ncbi.nlm.nih.gov/pubmed/2434600