Cargando…

Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells

The recognition that cells of the vascular wall can secrete cytokines such as IL-1 suggests new mechanisms for initiating or sustaining inflammatory responses in blood vessels. We report that purified human monocyte-derived IL-1 or recombinant human IL-1 (rIL-1 beta and rIL-1 alpha) induce cultured...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188313/
https://www.ncbi.nlm.nih.gov/pubmed/3494807
_version_ 1782146379119853568
collection PubMed
description The recognition that cells of the vascular wall can secrete cytokines such as IL-1 suggests new mechanisms for initiating or sustaining inflammatory responses in blood vessels. We report that purified human monocyte-derived IL-1 or recombinant human IL-1 (rIL-1 beta and rIL-1 alpha) induce cultured human smooth muscle cells derived from veins or arteries to synthesize IL-1 beta mRNA and produce and release biologically active IL-1. rIL-1 beta also stimulated the production of PGE2 by smooth muscle cells. Exposure to rIL-1 beta (1-100 ng/ml), or rIL-1 alpha (0.01-10 ng/ml) increased IL-1 beta mRNA levels within 30 min. Actinomycin D (1 microgram/ml) prevented the induction of IL-1 beta mRNA by rIL-1. IL-1 alpha mRNA was detected in SMC treated with cycloheximide (1 microgram/ml) and rIL-1 beta, or cycloheximide alone. rIL-1 alpha and rIL-1 beta produced maximal levels of IL-1 beta mRNA after 4 h, and intracellular IL-1 biological activity after 6 h of exposure. Release of IL-1 activity in the extracellular medium began after 1 h of incubation with rIL-1 beta or rIL-1 alpha, and continued for up to 24 h. Anti-TNF antiserum that neutralized the biological activity of rTNF did not affect rIL-1-induced production of IL-1 beta mRNA or IL-1 release, suggesting that the release of TNF does not mediate these processes. Several experimental approaches indicated that the release of IL-1 by smooth muscle cells was not due to endotoxin contamination of the IL-1 preparations. Anti-IL-1 antiserum blocked the induction of smooth muscle cell IL-1 gene expression by rIL-1 beta. Polymyxin B did not prevent IL-1-induced IL-1 expression by these cells, but blocked the effect of endotoxin. Heat treatment destroyed the stimulatory capacity of rIL-1 beta, but did not affect the ability of bacterial endotoxin to induce IL-1 expression. The production of IL- 1 by human vascular smooth muscle cells was not due to contamination of the cell cultures with blood monocytes, inasmuch as treatment with an antimonocyte antibody (anti-Mo2) and complement did not alter IL-1 beta mRNA content or the amount of IL-1 released from the cells in response to endotoxin, rIL-1 alpha, or rIL-1 beta.(ABSTRACT TRUNCATED AT 400 WORDS)
format Text
id pubmed-2188313
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21883132008-04-17 Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells J Exp Med Articles The recognition that cells of the vascular wall can secrete cytokines such as IL-1 suggests new mechanisms for initiating or sustaining inflammatory responses in blood vessels. We report that purified human monocyte-derived IL-1 or recombinant human IL-1 (rIL-1 beta and rIL-1 alpha) induce cultured human smooth muscle cells derived from veins or arteries to synthesize IL-1 beta mRNA and produce and release biologically active IL-1. rIL-1 beta also stimulated the production of PGE2 by smooth muscle cells. Exposure to rIL-1 beta (1-100 ng/ml), or rIL-1 alpha (0.01-10 ng/ml) increased IL-1 beta mRNA levels within 30 min. Actinomycin D (1 microgram/ml) prevented the induction of IL-1 beta mRNA by rIL-1. IL-1 alpha mRNA was detected in SMC treated with cycloheximide (1 microgram/ml) and rIL-1 beta, or cycloheximide alone. rIL-1 alpha and rIL-1 beta produced maximal levels of IL-1 beta mRNA after 4 h, and intracellular IL-1 biological activity after 6 h of exposure. Release of IL-1 activity in the extracellular medium began after 1 h of incubation with rIL-1 beta or rIL-1 alpha, and continued for up to 24 h. Anti-TNF antiserum that neutralized the biological activity of rTNF did not affect rIL-1-induced production of IL-1 beta mRNA or IL-1 release, suggesting that the release of TNF does not mediate these processes. Several experimental approaches indicated that the release of IL-1 by smooth muscle cells was not due to endotoxin contamination of the IL-1 preparations. Anti-IL-1 antiserum blocked the induction of smooth muscle cell IL-1 gene expression by rIL-1 beta. Polymyxin B did not prevent IL-1-induced IL-1 expression by these cells, but blocked the effect of endotoxin. Heat treatment destroyed the stimulatory capacity of rIL-1 beta, but did not affect the ability of bacterial endotoxin to induce IL-1 expression. The production of IL- 1 by human vascular smooth muscle cells was not due to contamination of the cell cultures with blood monocytes, inasmuch as treatment with an antimonocyte antibody (anti-Mo2) and complement did not alter IL-1 beta mRNA content or the amount of IL-1 released from the cells in response to endotoxin, rIL-1 alpha, or rIL-1 beta.(ABSTRACT TRUNCATED AT 400 WORDS) The Rockefeller University Press 1987-05-01 /pmc/articles/PMC2188313/ /pubmed/3494807 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells
title Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells
title_full Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells
title_fullStr Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells
title_full_unstemmed Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells
title_short Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells
title_sort human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188313/
https://www.ncbi.nlm.nih.gov/pubmed/3494807