Cargando…
Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma
We enriched bone marrow cells from 10 normal individuals for primitive hematopoietic progenitors using a two-step technique, and examined resultant primitive progenitors for their in vitro long-term repopulating capacity and their ability to adhere to irradiated stroma. Immunomagnetic depletion of m...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1990
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188338/ https://www.ncbi.nlm.nih.gov/pubmed/2373991 |
_version_ | 1782146385033822208 |
---|---|
collection | PubMed |
description | We enriched bone marrow cells from 10 normal individuals for primitive hematopoietic progenitors using a two-step technique, and examined resultant primitive progenitors for their in vitro long-term repopulating capacity and their ability to adhere to irradiated stroma. Immunomagnetic depletion of mature myeloid and lymphoid progenitors resulted in a lineage-negative (Lin-) cell population. Subsequent dual- color fluorescence activated sorting of cells with low forward and vertical light scatter properties, expressing CD34 antigen (34+) and either bearing (DR+) or lacking (DR-) the HLA-DR antigen, resulted in the selection of Lin-34+ DR+ and Lin-34+ DR- cell populations. When the Lin-34+ DR+ cell fraction was cultured in a short-term methylcellulose assay, we demonstrated a 61-fold enrichment for colony forming cells (CFC) compared with undepleted bone marrow mononuclear cells. In contrast to the Lin-34+ DR+ cells, direct culture of Lin-34+ DR- cells in short-term methylcellulose generated significantly less CFC (p less than or equal to 0.001). We then compared the capacity of Lin-34+ DR+ and Lin-34+ DR- cells to generate sustained hematopoiesis when plated in long-term bone marrow culture (LTBMC). When LTBMC were initiated with plated Lin-34+ DR+ cells, we recovered high numbers of CFC during the first week, but observed a rapid decline in the number of harvested CFC over the following weeks. No CFC could be recovered after week 7. In contrast, LTBMC initiated with plated Lin-34+ DR- cells yielded significantly greater numbers of CFC than LTBMC initiated with plated Lin-34+ DR+ cells (p less than or equal to 0.001), and this was sustained for at least 12 wk of culture. The Lin-34+ DR+ population was only 6.6-fold enriched for primitive progenitors capable of initiating and sustaining hematopoiesis in LTBMC when compared with undepleted bone marrow mononuclear cells, while the Lin-34+ DR- population was 424- fold enriched for such primitive progenitors (p less than or equal to 0.001). Finally, we examined the capacity of both Lin-34+ DR+ and Lin- 34+ DR- populations to adhere to irradiated allogeneic stroma. We used a previously described "panning method" in which cells are plated onto stroma for 2 h, the nonadherent cells removed by extensive washing, and the adherent fraction maintained under conditions favoring LTBMC growth. When stroma was panned with Lin -34+ DR+ cells, 79 +/- 10% of the cells were recovered in the panning effluent. In contrast, when stroma was panned with Lin -34 + DR- cells, significantly fewer (37 +/- 7%) (p less than or equal to 0.001) cells were recovered in the panning effluent. Unlike LTBMC initiated with plated Lin -34 + DR+ cells, virtually no CFC were recovered from LTBMC initiated with panned Lin - 34 + DR+ cells.(ABSTRACT TRUNCATED AT 400 WORDS) |
format | Text |
id | pubmed-2188338 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1990 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21883382008-04-17 Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma J Exp Med Articles We enriched bone marrow cells from 10 normal individuals for primitive hematopoietic progenitors using a two-step technique, and examined resultant primitive progenitors for their in vitro long-term repopulating capacity and their ability to adhere to irradiated stroma. Immunomagnetic depletion of mature myeloid and lymphoid progenitors resulted in a lineage-negative (Lin-) cell population. Subsequent dual- color fluorescence activated sorting of cells with low forward and vertical light scatter properties, expressing CD34 antigen (34+) and either bearing (DR+) or lacking (DR-) the HLA-DR antigen, resulted in the selection of Lin-34+ DR+ and Lin-34+ DR- cell populations. When the Lin-34+ DR+ cell fraction was cultured in a short-term methylcellulose assay, we demonstrated a 61-fold enrichment for colony forming cells (CFC) compared with undepleted bone marrow mononuclear cells. In contrast to the Lin-34+ DR+ cells, direct culture of Lin-34+ DR- cells in short-term methylcellulose generated significantly less CFC (p less than or equal to 0.001). We then compared the capacity of Lin-34+ DR+ and Lin-34+ DR- cells to generate sustained hematopoiesis when plated in long-term bone marrow culture (LTBMC). When LTBMC were initiated with plated Lin-34+ DR+ cells, we recovered high numbers of CFC during the first week, but observed a rapid decline in the number of harvested CFC over the following weeks. No CFC could be recovered after week 7. In contrast, LTBMC initiated with plated Lin-34+ DR- cells yielded significantly greater numbers of CFC than LTBMC initiated with plated Lin-34+ DR+ cells (p less than or equal to 0.001), and this was sustained for at least 12 wk of culture. The Lin-34+ DR+ population was only 6.6-fold enriched for primitive progenitors capable of initiating and sustaining hematopoiesis in LTBMC when compared with undepleted bone marrow mononuclear cells, while the Lin-34+ DR- population was 424- fold enriched for such primitive progenitors (p less than or equal to 0.001). Finally, we examined the capacity of both Lin-34+ DR+ and Lin- 34+ DR- populations to adhere to irradiated allogeneic stroma. We used a previously described "panning method" in which cells are plated onto stroma for 2 h, the nonadherent cells removed by extensive washing, and the adherent fraction maintained under conditions favoring LTBMC growth. When stroma was panned with Lin -34+ DR+ cells, 79 +/- 10% of the cells were recovered in the panning effluent. In contrast, when stroma was panned with Lin -34 + DR- cells, significantly fewer (37 +/- 7%) (p less than or equal to 0.001) cells were recovered in the panning effluent. Unlike LTBMC initiated with plated Lin -34 + DR+ cells, virtually no CFC were recovered from LTBMC initiated with panned Lin - 34 + DR+ cells.(ABSTRACT TRUNCATED AT 400 WORDS) The Rockefeller University Press 1990-08-01 /pmc/articles/PMC2188338/ /pubmed/2373991 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma |
title | Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma |
title_full | Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma |
title_fullStr | Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma |
title_full_unstemmed | Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma |
title_short | Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma |
title_sort | purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188338/ https://www.ncbi.nlm.nih.gov/pubmed/2373991 |