Cargando…
Novel macrophage receptor for glucose-modified proteins is distinct from previously described scavenger receptors
A high-affinity macrophage receptor has been identified that recognizes proteins modified by a common in vivo process, long-term nonenzymatic reaction of glucose with proteins (AGE proteins). This receptor for glucose-modified proteins is now shown to be distinct from previously described scavenger...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1986
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188430/ https://www.ncbi.nlm.nih.gov/pubmed/3760778 |
Sumario: | A high-affinity macrophage receptor has been identified that recognizes proteins modified by a common in vivo process, long-term nonenzymatic reaction of glucose with proteins (AGE proteins). This receptor for glucose-modified proteins is now shown to be distinct from previously described scavenger receptors, using competition and crosscompetition experiments between AGE-modified protein and a variety of in vitro- modified scavenger receptor ligands, including unmodified BSA, unmodified low-density lipoproteins (LDL), acetyl-LDL, maleyl-BSA, and formaldehyde-treated BSA. Furthermore, the specific pattern of AGE- protein receptor inhibition by the polyanionic compounds polyinosinic acid, polyadenylic acid, polyglutamic acid, polycytidylic acid, fucoidin, and heparin was distinctly different from that of acetyl-LDL. By thus selectively recognizing a time-dependent in vivo protein modification, macrophages may preferentially degrade senescent macromolecules, thereby having an important role in the regulation of extracellular protein turnover. |
---|