Cargando…

Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer

Tumor-specific transplantation antigens are antigens that can lead to complete immunological destruction of a transplanted cancer by the syngeneic host. When such antigens are expressed on cancers induced by chemical or physical carcinogens, then they are usually unique, i.e., antigenically differen...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188451/
https://www.ncbi.nlm.nih.gov/pubmed/3490532
_version_ 1782146411396071424
collection PubMed
description Tumor-specific transplantation antigens are antigens that can lead to complete immunological destruction of a transplanted cancer by the syngeneic host. When such antigens are expressed on cancers induced by chemical or physical carcinogens, then they are usually unique, i.e., antigenically different for each independently induced tumor. In this study, we show that the product of a gene encoding a novel MHC class I molecule and isolated from the murine UV light-induced regressor tumor 1591 represents one such unique tumor-specific transplantation antigen that causes tumor rejection. The major evidence comes from our finding that 1591 progressor variants regularly lost the gene encoding this antigen that is expressed in the parental tumor that regresses in normal mice; furthermore, reintroduction of this gene into a 1591 progressor variant by DNA transfection caused the progressor variant to regress in normal immunocompetent mice. Thus, the progressor tumor reverted to the parental regressor phenotype following transfection. Consistent with the conclusion that the expression of the novel MHC class I gene following transfection was responsible for the regressor phenotype is also our finding that a variant of the transfected tumor that had lost expression of the transfected gene resumed its progressive growth behavior. Finally, we show that the molecule encoded by the novel class I gene is specifically recognized by a syngeneic tumor-specific cytolytic T cell clone that we have previously shown to select in vitro for progressor variants from the parental regressor tumor cell line. It remains to be determined to what extent unique tumor-specific rejection antigens of other highly immunogenic regressor tumors are encoded by novel MHC class I genes and whether these genes represent germline mutations or somatic mutations caused by the carcinogen treatment.
format Text
id pubmed-2188451
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21884512008-04-17 Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer J Exp Med Articles Tumor-specific transplantation antigens are antigens that can lead to complete immunological destruction of a transplanted cancer by the syngeneic host. When such antigens are expressed on cancers induced by chemical or physical carcinogens, then they are usually unique, i.e., antigenically different for each independently induced tumor. In this study, we show that the product of a gene encoding a novel MHC class I molecule and isolated from the murine UV light-induced regressor tumor 1591 represents one such unique tumor-specific transplantation antigen that causes tumor rejection. The major evidence comes from our finding that 1591 progressor variants regularly lost the gene encoding this antigen that is expressed in the parental tumor that regresses in normal mice; furthermore, reintroduction of this gene into a 1591 progressor variant by DNA transfection caused the progressor variant to regress in normal immunocompetent mice. Thus, the progressor tumor reverted to the parental regressor phenotype following transfection. Consistent with the conclusion that the expression of the novel MHC class I gene following transfection was responsible for the regressor phenotype is also our finding that a variant of the transfected tumor that had lost expression of the transfected gene resumed its progressive growth behavior. Finally, we show that the molecule encoded by the novel class I gene is specifically recognized by a syngeneic tumor-specific cytolytic T cell clone that we have previously shown to select in vitro for progressor variants from the parental regressor tumor cell line. It remains to be determined to what extent unique tumor-specific rejection antigens of other highly immunogenic regressor tumors are encoded by novel MHC class I genes and whether these genes represent germline mutations or somatic mutations caused by the carcinogen treatment. The Rockefeller University Press 1986-11-01 /pmc/articles/PMC2188451/ /pubmed/3490532 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer
title Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer
title_full Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer
title_fullStr Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer
title_full_unstemmed Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer
title_short Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer
title_sort identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188451/
https://www.ncbi.nlm.nih.gov/pubmed/3490532