Cargando…

Distinct fates of self-specific T cells developing in irradiation bone marrow chimeras: clonal deletion, clonal anergy, or in vitro responsiveness to self-Mls-1a controlled by hemopoietic cells in the thymus

Elimination of potentially self-reactive T lymphocytes during their maturation in the thymus has been shown to be a major mechanism in accomplishing self-tolerance. Previous reports demonstrated that clonal deletion of self-Mls-1a-specific V beta 6+ T lymphocyte is controlled by a radiosensitive I-E...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188660/
https://www.ncbi.nlm.nih.gov/pubmed/2230645
_version_ 1782146460489351168
collection PubMed
description Elimination of potentially self-reactive T lymphocytes during their maturation in the thymus has been shown to be a major mechanism in accomplishing self-tolerance. Previous reports demonstrated that clonal deletion of self-Mls-1a-specific V beta 6+ T lymphocyte is controlled by a radiosensitive I-E+ thymic component. Irradiation chimeras reconstituted with I-E- bone marrow showed substantial numbers of mature V beta 6+ T cells despite host Mls-1a expression. Analysis of the functional properties of such chimeric T cells revealed a surprising variability in their in vitro reactivity to host Mls-1a, depending on the H-2 haplotype of stem cells used for reconstitution. In chimeras reconstituted with B10.S (H-2s) stem cells, mature V beta 6+ lymphocytes were present but functionally anergic to host-type Mls- 1a in vitro. In contrast, in chimeras reconstituted with B10.G (H-2q) bone marrow, nondeleted V beta 6+ cells were highly responsive to Mls- 1a in vitro. These findings suggest that clonal anergy of V beta 6+ cells to self-Mls-1a may be controlled by the affinity/avidity of T cell receptor interactions with bone marrow-derived cells in the thymus depending on the major histocompatibility complex class II molecules involved. Furthermore, chimeras bearing host (Mls-1a)-reactive V beta 6+ cells did not differ clinically from those with anergic or deleted V beta 6+ cells and survived more than one year without signs of autoimmune disease. Interestingly, their spleen cells had no Mls-1a stimulatory capacity in vitro. Therefore, regulation at the level of antigen presentation may be an alternative mechanism for maintenance of tolerance to certain self-antigens such as Mls-1a.
format Text
id pubmed-2188660
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21886602008-04-17 Distinct fates of self-specific T cells developing in irradiation bone marrow chimeras: clonal deletion, clonal anergy, or in vitro responsiveness to self-Mls-1a controlled by hemopoietic cells in the thymus J Exp Med Articles Elimination of potentially self-reactive T lymphocytes during their maturation in the thymus has been shown to be a major mechanism in accomplishing self-tolerance. Previous reports demonstrated that clonal deletion of self-Mls-1a-specific V beta 6+ T lymphocyte is controlled by a radiosensitive I-E+ thymic component. Irradiation chimeras reconstituted with I-E- bone marrow showed substantial numbers of mature V beta 6+ T cells despite host Mls-1a expression. Analysis of the functional properties of such chimeric T cells revealed a surprising variability in their in vitro reactivity to host Mls-1a, depending on the H-2 haplotype of stem cells used for reconstitution. In chimeras reconstituted with B10.S (H-2s) stem cells, mature V beta 6+ lymphocytes were present but functionally anergic to host-type Mls- 1a in vitro. In contrast, in chimeras reconstituted with B10.G (H-2q) bone marrow, nondeleted V beta 6+ cells were highly responsive to Mls- 1a in vitro. These findings suggest that clonal anergy of V beta 6+ cells to self-Mls-1a may be controlled by the affinity/avidity of T cell receptor interactions with bone marrow-derived cells in the thymus depending on the major histocompatibility complex class II molecules involved. Furthermore, chimeras bearing host (Mls-1a)-reactive V beta 6+ cells did not differ clinically from those with anergic or deleted V beta 6+ cells and survived more than one year without signs of autoimmune disease. Interestingly, their spleen cells had no Mls-1a stimulatory capacity in vitro. Therefore, regulation at the level of antigen presentation may be an alternative mechanism for maintenance of tolerance to certain self-antigens such as Mls-1a. The Rockefeller University Press 1990-11-01 /pmc/articles/PMC2188660/ /pubmed/2230645 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Distinct fates of self-specific T cells developing in irradiation bone marrow chimeras: clonal deletion, clonal anergy, or in vitro responsiveness to self-Mls-1a controlled by hemopoietic cells in the thymus
title Distinct fates of self-specific T cells developing in irradiation bone marrow chimeras: clonal deletion, clonal anergy, or in vitro responsiveness to self-Mls-1a controlled by hemopoietic cells in the thymus
title_full Distinct fates of self-specific T cells developing in irradiation bone marrow chimeras: clonal deletion, clonal anergy, or in vitro responsiveness to self-Mls-1a controlled by hemopoietic cells in the thymus
title_fullStr Distinct fates of self-specific T cells developing in irradiation bone marrow chimeras: clonal deletion, clonal anergy, or in vitro responsiveness to self-Mls-1a controlled by hemopoietic cells in the thymus
title_full_unstemmed Distinct fates of self-specific T cells developing in irradiation bone marrow chimeras: clonal deletion, clonal anergy, or in vitro responsiveness to self-Mls-1a controlled by hemopoietic cells in the thymus
title_short Distinct fates of self-specific T cells developing in irradiation bone marrow chimeras: clonal deletion, clonal anergy, or in vitro responsiveness to self-Mls-1a controlled by hemopoietic cells in the thymus
title_sort distinct fates of self-specific t cells developing in irradiation bone marrow chimeras: clonal deletion, clonal anergy, or in vitro responsiveness to self-mls-1a controlled by hemopoietic cells in the thymus
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188660/
https://www.ncbi.nlm.nih.gov/pubmed/2230645