Cargando…

Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis

We have investigated the mechanism of the inhibition of phagosome- lysosome (P-L) fusion in macrophages known to occur after infection by Mycobacterium tuberculosis and by the mouse pathogen Mycobacterium microti. We have used an M. microti infection and have studied, first, the saltatory movements...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188726/
https://www.ncbi.nlm.nih.gov/pubmed/3309128
_version_ 1782146475805900800
collection PubMed
description We have investigated the mechanism of the inhibition of phagosome- lysosome (P-L) fusion in macrophages known to occur after infection by Mycobacterium tuberculosis and by the mouse pathogen Mycobacterium microti. We have used an M. microti infection and have studied, first, the saltatory movements of periphagosomal secondary lysosomes by means of visual phase-contrast microscopy (a similar use of the method having been previously supported by computer analyses). The movements became slow or static after ingestion of live but not of heat-killed M. microti. They were unaffected by a fusiogenic mycobacterium M. lepraemurium. Second, we studied the behavior of a normally fusiogenic unrelated organism, Saccharomyces cerevisiae, after its phagocytosis by cells already containing live M. microti ingested 18 h previously. We observed, using a fluorescent assay of fusion, that many of these yeast phagosomes now also failed to fuse with the lysosomes; in contrast, when the host M. microti had been heat killed the yeast phagosomes fused normally. These observations were extended by ultrastructural quantitative analyses of P-L fusion, which confirmed the nonfusion of phagosomes of live M. microti and, more particularly, the change to nonfusion from the normal fusion behavior of the separate phagosomes of accompanying yeasts. Third, we have assembled evidence against the likelihood that these M. microti-induced phenomena are nonspecific, i.e., secondary to a general depression of activity of heavily infected host cells. The evidence includes the feasibility of adjusting the degree of infection so as to facilitate visual assessment of organelle movements without the presence of detectable damage to the cells studied; the absence of lysosomal stasis after comparable infection with another mycobacterium of comparable virulence (M. lepraemurium); and the reversibility of the stasis. We conclude that inhibition of lysosome saltatory movements (and consequently its secondary effect on the associated yeasts) is a significant, specifically induced phenomenon. From these observations and considerations, therefore, in conjunction with the analogous inhibition of lysosomal movements in normal macrophages by some chemical inhibitors of P-L fusion, and our suggestion that this association is causally related, we now suggest that M. microti-induced focal lysosomal stasis is also the main means by which the inhibition of P-L fusion is brought about by this organism. This concept is strengthened by the observations on S. cerevisiae, which provide strong evidence that stasis can cause suppression of fusion.
format Text
id pubmed-2188726
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21887262008-04-17 Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis J Exp Med Articles We have investigated the mechanism of the inhibition of phagosome- lysosome (P-L) fusion in macrophages known to occur after infection by Mycobacterium tuberculosis and by the mouse pathogen Mycobacterium microti. We have used an M. microti infection and have studied, first, the saltatory movements of periphagosomal secondary lysosomes by means of visual phase-contrast microscopy (a similar use of the method having been previously supported by computer analyses). The movements became slow or static after ingestion of live but not of heat-killed M. microti. They were unaffected by a fusiogenic mycobacterium M. lepraemurium. Second, we studied the behavior of a normally fusiogenic unrelated organism, Saccharomyces cerevisiae, after its phagocytosis by cells already containing live M. microti ingested 18 h previously. We observed, using a fluorescent assay of fusion, that many of these yeast phagosomes now also failed to fuse with the lysosomes; in contrast, when the host M. microti had been heat killed the yeast phagosomes fused normally. These observations were extended by ultrastructural quantitative analyses of P-L fusion, which confirmed the nonfusion of phagosomes of live M. microti and, more particularly, the change to nonfusion from the normal fusion behavior of the separate phagosomes of accompanying yeasts. Third, we have assembled evidence against the likelihood that these M. microti-induced phenomena are nonspecific, i.e., secondary to a general depression of activity of heavily infected host cells. The evidence includes the feasibility of adjusting the degree of infection so as to facilitate visual assessment of organelle movements without the presence of detectable damage to the cells studied; the absence of lysosomal stasis after comparable infection with another mycobacterium of comparable virulence (M. lepraemurium); and the reversibility of the stasis. We conclude that inhibition of lysosome saltatory movements (and consequently its secondary effect on the associated yeasts) is a significant, specifically induced phenomenon. From these observations and considerations, therefore, in conjunction with the analogous inhibition of lysosomal movements in normal macrophages by some chemical inhibitors of P-L fusion, and our suggestion that this association is causally related, we now suggest that M. microti-induced focal lysosomal stasis is also the main means by which the inhibition of P-L fusion is brought about by this organism. This concept is strengthened by the observations on S. cerevisiae, which provide strong evidence that stasis can cause suppression of fusion. The Rockefeller University Press 1987-10-01 /pmc/articles/PMC2188726/ /pubmed/3309128 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis
title Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis
title_full Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis
title_fullStr Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis
title_full_unstemmed Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis
title_short Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis
title_sort inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188726/
https://www.ncbi.nlm.nih.gov/pubmed/3309128