Cargando…

Immunoregulatory role of transforming growth factor beta (TGF-beta) in development of killer cells: comparison of active and latent TGF-beta 1

Using recombinant DNA technology, we have generated Chinese hamster ovary (CHO) cell lines that synthesize latent transforming growth factor beta 1 (TGF-beta 1) to study immune regulation by TGF-beta 1. In vitro, latent TGF-beta 1 synthesized by transfectants or added exogenously as a purified compl...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188774/
https://www.ncbi.nlm.nih.gov/pubmed/2258706
Descripción
Sumario:Using recombinant DNA technology, we have generated Chinese hamster ovary (CHO) cell lines that synthesize latent transforming growth factor beta 1 (TGF-beta 1) to study immune regulation by TGF-beta 1. In vitro, latent TGF-beta 1 synthesized by transfectants or added exogenously as a purified complex after activation inhibited CTL generation to a similar extent as seen with acid-activated recombinant human (rHu) TGF-beta 1. In vivo, serum from nu/nu mice bearing CHO/TGF- beta 1 tumors contained significant levels of latent TGF-beta 1 in addition to depressed natural killer (NK) activity in spleens which paralleled that seen in C3H/HeJ mice treated with acid-activated rHuTGF- beta 1. rHuTGF-beta 1 treatment of mice receiving heart allografts resulted in significant enhancement of organ graft survival. Because of possible regulated tissue-specific activation, administration of latent rather than active TGF-beta may provide a better route to deliver this powerful immunosuppressive agent in vivo.