Cargando…
Influences of antigen processing on the expression of the T cell repertoire. Evidence for MHC-specific hindering structures on the products of processing
Two lines of evidence in the current study indicate that antigen processing is a major factor, in addition to MHC binding and T cell repertoire, that determines Ir gene responsiveness and epitope immunodominance. First, immunization with synthetic peptides of myoglobin sequences revealed new reactiv...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1988
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188979/ https://www.ncbi.nlm.nih.gov/pubmed/2456373 |
_version_ | 1782146534664568832 |
---|---|
collection | PubMed |
description | Two lines of evidence in the current study indicate that antigen processing is a major factor, in addition to MHC binding and T cell repertoire, that determines Ir gene responsiveness and epitope immunodominance. First, immunization with synthetic peptides of myoglobin sequences revealed new reactivities that had not appeared after priming with native myoglobin. For example, B10.S mice (H-2S) immune to equine myoglobin predominantly responded to peptide 102-118, whereas there was little, if any, response to this peptide in B10.BR (H- 2k) mice immunized with native equine myoglobin. However, after immunization with the 102-118 peptide, both strains responded to the peptide. After in vitro restimulation, B10.BR T cells responded as well as B10.S T cells. Similarly, some individual 102-118-specific T cell clones from mice of both haplotypes showed similar dose responses and fine specificity patterns. Thus, low responsiveness to this site is due neither to a hole in the repertoire nor to a failure to bind to the appropriate MHC molecule. An alternative explanation was suggested by the observation that, whereas B10.S T cells from peptide 102-118-immune mice responded almost as well to whole myoglobin as to the peptide, the B10.BR T cells from peptide immune mice, while responding well to peptide, were poorly stimulated by whole myoglobin. Thus, the product of natural processing of equine myoglobin probably has hindering structures in the regions flanking the core epitope 102-118 that interfere with presentation by I-Ak but not I-AS. The second line of evidence that processing of native myoglobin may influence the apparent specificity of the T cell response was obtained using the I-Ad- restricted sperm whale myoglobin 102-118-specific clone 9.27. This clone discriminated readily between whole sperm whale myoglobin and equine myoglobin, but it did not distinguish between peptides corresponding to 102-118 of the sperm whale and equine sequences. This distinction between equine peptide and native equine myoglobin could be overcome by artificial "processing" of equine myoglobin with cyanogen bromide. In both sets of experiments, F1 APCs that present the same epitope well to T cells of another haplotype failed to overcome the defect, which was therefore not due to the availability of different processed cleavage fragments in APC of different haplotypes, as would be expected if there were MHC-linked processing. Thus, the differential responses to peptides versus native molecule for both I-Ad- and I-Ak- restricted clones appeared to depend on the restricting molecule used.(ABSTRACT TRUNCATED AT 400 WORDS) |
format | Text |
id | pubmed-2188979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1988 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21889792008-04-17 Influences of antigen processing on the expression of the T cell repertoire. Evidence for MHC-specific hindering structures on the products of processing J Exp Med Articles Two lines of evidence in the current study indicate that antigen processing is a major factor, in addition to MHC binding and T cell repertoire, that determines Ir gene responsiveness and epitope immunodominance. First, immunization with synthetic peptides of myoglobin sequences revealed new reactivities that had not appeared after priming with native myoglobin. For example, B10.S mice (H-2S) immune to equine myoglobin predominantly responded to peptide 102-118, whereas there was little, if any, response to this peptide in B10.BR (H- 2k) mice immunized with native equine myoglobin. However, after immunization with the 102-118 peptide, both strains responded to the peptide. After in vitro restimulation, B10.BR T cells responded as well as B10.S T cells. Similarly, some individual 102-118-specific T cell clones from mice of both haplotypes showed similar dose responses and fine specificity patterns. Thus, low responsiveness to this site is due neither to a hole in the repertoire nor to a failure to bind to the appropriate MHC molecule. An alternative explanation was suggested by the observation that, whereas B10.S T cells from peptide 102-118-immune mice responded almost as well to whole myoglobin as to the peptide, the B10.BR T cells from peptide immune mice, while responding well to peptide, were poorly stimulated by whole myoglobin. Thus, the product of natural processing of equine myoglobin probably has hindering structures in the regions flanking the core epitope 102-118 that interfere with presentation by I-Ak but not I-AS. The second line of evidence that processing of native myoglobin may influence the apparent specificity of the T cell response was obtained using the I-Ad- restricted sperm whale myoglobin 102-118-specific clone 9.27. This clone discriminated readily between whole sperm whale myoglobin and equine myoglobin, but it did not distinguish between peptides corresponding to 102-118 of the sperm whale and equine sequences. This distinction between equine peptide and native equine myoglobin could be overcome by artificial "processing" of equine myoglobin with cyanogen bromide. In both sets of experiments, F1 APCs that present the same epitope well to T cells of another haplotype failed to overcome the defect, which was therefore not due to the availability of different processed cleavage fragments in APC of different haplotypes, as would be expected if there were MHC-linked processing. Thus, the differential responses to peptides versus native molecule for both I-Ad- and I-Ak- restricted clones appeared to depend on the restricting molecule used.(ABSTRACT TRUNCATED AT 400 WORDS) The Rockefeller University Press 1988-07-01 /pmc/articles/PMC2188979/ /pubmed/2456373 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Influences of antigen processing on the expression of the T cell repertoire. Evidence for MHC-specific hindering structures on the products of processing |
title | Influences of antigen processing on the expression of the T cell repertoire. Evidence for MHC-specific hindering structures on the products of processing |
title_full | Influences of antigen processing on the expression of the T cell repertoire. Evidence for MHC-specific hindering structures on the products of processing |
title_fullStr | Influences of antigen processing on the expression of the T cell repertoire. Evidence for MHC-specific hindering structures on the products of processing |
title_full_unstemmed | Influences of antigen processing on the expression of the T cell repertoire. Evidence for MHC-specific hindering structures on the products of processing |
title_short | Influences of antigen processing on the expression of the T cell repertoire. Evidence for MHC-specific hindering structures on the products of processing |
title_sort | influences of antigen processing on the expression of the t cell repertoire. evidence for mhc-specific hindering structures on the products of processing |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188979/ https://www.ncbi.nlm.nih.gov/pubmed/2456373 |