Cargando…

Characterization of a third form of the human T cell receptor gamma/delta

A subpopulation of the CD3+ peripheral T lymphocytes express the TCR- gamma/delta complex. Three distinct TCR-gamma forms that differ in size and in the ability to form a disulfide bridge with the TCR-delta subunit have been described. In this study we analyze the structural difference between the n...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189008/
https://www.ncbi.nlm.nih.gov/pubmed/3261778
_version_ 1782146541468778496
collection PubMed
description A subpopulation of the CD3+ peripheral T lymphocytes express the TCR- gamma/delta complex. Three distinct TCR-gamma forms that differ in size and in the ability to form a disulfide bridge with the TCR-delta subunit have been described. In this study we analyze the structural difference between the non-disulfide-linked 55-kD and 40-kD TCR-gamma chains. The 40-kD TCR-gamma form contains a smaller polypeptide backbone and carries less carbohydrate compared with the 55-kD TCR- gamma form. A cDNA clone corresponding to the 40-kD TCR-gamma subunit lacks one copy of the second exon of the constant region that is present in the other TCR-gamma subunit. This exon copy encodes part of the connector region that is located between the constant domain and the membrane spanning region. We show that the number of potential N- linked glycan attachment sites are the same for the two TCR-gamma forms. Since these attachment sites are located in the connector region we conclude that the connector region influences the amount of N-linked carbohydrates added to the core TCR-gamma polypeptide, probably by affecting the conformation of the protein. In contrast to the TCR-beta constant region usage, the TCR-gamma constant regions are unequally expressed. Virtually exclusive usage of disulfide-linked complexes were found in some individuals, while both the disulfide-linked and the 40- kD, non-disulfide-linked TCR-gamma forms were detected in other subjects. The ability to distinguish these TCR-gamma/delta forms now makes it possible to study the mechanisms that govern their selection and to determine if they correspond to functionally distinct isotypes.
format Text
id pubmed-2189008
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21890082008-04-17 Characterization of a third form of the human T cell receptor gamma/delta J Exp Med Articles A subpopulation of the CD3+ peripheral T lymphocytes express the TCR- gamma/delta complex. Three distinct TCR-gamma forms that differ in size and in the ability to form a disulfide bridge with the TCR-delta subunit have been described. In this study we analyze the structural difference between the non-disulfide-linked 55-kD and 40-kD TCR-gamma chains. The 40-kD TCR-gamma form contains a smaller polypeptide backbone and carries less carbohydrate compared with the 55-kD TCR- gamma form. A cDNA clone corresponding to the 40-kD TCR-gamma subunit lacks one copy of the second exon of the constant region that is present in the other TCR-gamma subunit. This exon copy encodes part of the connector region that is located between the constant domain and the membrane spanning region. We show that the number of potential N- linked glycan attachment sites are the same for the two TCR-gamma forms. Since these attachment sites are located in the connector region we conclude that the connector region influences the amount of N-linked carbohydrates added to the core TCR-gamma polypeptide, probably by affecting the conformation of the protein. In contrast to the TCR-beta constant region usage, the TCR-gamma constant regions are unequally expressed. Virtually exclusive usage of disulfide-linked complexes were found in some individuals, while both the disulfide-linked and the 40- kD, non-disulfide-linked TCR-gamma forms were detected in other subjects. The ability to distinguish these TCR-gamma/delta forms now makes it possible to study the mechanisms that govern their selection and to determine if they correspond to functionally distinct isotypes. The Rockefeller University Press 1988-08-01 /pmc/articles/PMC2189008/ /pubmed/3261778 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Characterization of a third form of the human T cell receptor gamma/delta
title Characterization of a third form of the human T cell receptor gamma/delta
title_full Characterization of a third form of the human T cell receptor gamma/delta
title_fullStr Characterization of a third form of the human T cell receptor gamma/delta
title_full_unstemmed Characterization of a third form of the human T cell receptor gamma/delta
title_short Characterization of a third form of the human T cell receptor gamma/delta
title_sort characterization of a third form of the human t cell receptor gamma/delta
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189008/
https://www.ncbi.nlm.nih.gov/pubmed/3261778