Cargando…

Glycosylation of a VH residue of a monoclonal antibody against alpha (1- ---6) dextran increases its affinity for antigen

We have observed that antidextran hybridomas with potential N-linked glycosylation sites in VH have higher affinity for polymeric dextran and for isomaltoheptaose than those lacking potential glycosylation sites. In these studies we have used gene transfection and expression techniques to verify tha...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189025/
https://www.ncbi.nlm.nih.gov/pubmed/2459288
Descripción
Sumario:We have observed that antidextran hybridomas with potential N-linked glycosylation sites in VH have higher affinity for polymeric dextran and for isomaltoheptaose than those lacking potential glycosylation sites. In these studies we have used gene transfection and expression techniques to verify that the carbohydrate addition sites in VH were used. The carbohydrate of the VH region was accessible for binding by the lectin Con A. By ELISA analysis it was demonstrated that the aKa of the antibody for dextran was influenced by the presence of carbohydrate in VH, with the aglycosylated antibody having an aKa 15-fold lower than its untreated counterpart. The aKa for antigen of antibodies that contain carbohydrate only in their constant region was unaffected by lack of carbohydrate. Thus, not only the amino acid sequence of the variable region but also its carbohydrate moieties can determine the magnitude of the antigen-antibody interaction.