Cargando…
Human T cell activation. I. Monocyte-independent activation and proliferation induced by anti-T3 monoclonal antibodies in the presence of tumor promoter 12-o-tetradecanoyl phorbol-13 acetate
Three monoclonal antibodies (mAb), of IgG1, IgG2a, and IgM isotypes, raised against the T3 complex, were used to probe the activation of human T cells. The IgM antibody 235 was not mitogenic for peripheral blood mononuclear cells (PMC). It efficiently blocked the proliferation of PMC induced by T ce...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1985
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189054/ https://www.ncbi.nlm.nih.gov/pubmed/3920341 |
_version_ | 1782146552367677440 |
---|---|
collection | PubMed |
description | Three monoclonal antibodies (mAb), of IgG1, IgG2a, and IgM isotypes, raised against the T3 complex, were used to probe the activation of human T cells. The IgM antibody 235 was not mitogenic for peripheral blood mononuclear cells (PMC). It efficiently blocked the proliferation of PMC induced by T cell mitogens, alloantigens, and soluble antigens. The other two antibodies were mitogenic, and behaved similarly to Leu 4 and OKT3, respectively. In T cell preparations with less than 0.1% monocytes (as assayed by nonspecific esterase staining), all three mAb were not mitogenic. They failed to induce either interleukin 2 (IL-2) receptor expression or IL-2 secretion. Addition of IL-1 failed to collaborate with anti-T3 mAb to induce these T cells to proliferate, but IL-2 enhanced T cell proliferation slightly. Monocyte-depleted T cells, however, proliferated in response to all three anti-T3 mAb, when TPA was added, in a dose-dependent manner. TPA induced a low level of IL-2 receptor expression in monocyte-depleted T cells, without inducing IL-2 secretion. Anti-T3 plus TPA induced a marked enhancement in both quantity and intensity of IL-2 receptor expression. IL-2 secretion was also detected. These results indicate that anti-T3 IgM can deliver an inductive signal despite its blockage of T cell proliferation, and that two signals are necessary and perhaps sufficient to induce human T cell activation and proliferation. |
format | Text |
id | pubmed-2189054 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1985 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21890542008-04-17 Human T cell activation. I. Monocyte-independent activation and proliferation induced by anti-T3 monoclonal antibodies in the presence of tumor promoter 12-o-tetradecanoyl phorbol-13 acetate J Exp Med Articles Three monoclonal antibodies (mAb), of IgG1, IgG2a, and IgM isotypes, raised against the T3 complex, were used to probe the activation of human T cells. The IgM antibody 235 was not mitogenic for peripheral blood mononuclear cells (PMC). It efficiently blocked the proliferation of PMC induced by T cell mitogens, alloantigens, and soluble antigens. The other two antibodies were mitogenic, and behaved similarly to Leu 4 and OKT3, respectively. In T cell preparations with less than 0.1% monocytes (as assayed by nonspecific esterase staining), all three mAb were not mitogenic. They failed to induce either interleukin 2 (IL-2) receptor expression or IL-2 secretion. Addition of IL-1 failed to collaborate with anti-T3 mAb to induce these T cells to proliferate, but IL-2 enhanced T cell proliferation slightly. Monocyte-depleted T cells, however, proliferated in response to all three anti-T3 mAb, when TPA was added, in a dose-dependent manner. TPA induced a low level of IL-2 receptor expression in monocyte-depleted T cells, without inducing IL-2 secretion. Anti-T3 plus TPA induced a marked enhancement in both quantity and intensity of IL-2 receptor expression. IL-2 secretion was also detected. These results indicate that anti-T3 IgM can deliver an inductive signal despite its blockage of T cell proliferation, and that two signals are necessary and perhaps sufficient to induce human T cell activation and proliferation. The Rockefeller University Press 1985-04-01 /pmc/articles/PMC2189054/ /pubmed/3920341 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Human T cell activation. I. Monocyte-independent activation and proliferation induced by anti-T3 monoclonal antibodies in the presence of tumor promoter 12-o-tetradecanoyl phorbol-13 acetate |
title | Human T cell activation. I. Monocyte-independent activation and proliferation induced by anti-T3 monoclonal antibodies in the presence of tumor promoter 12-o-tetradecanoyl phorbol-13 acetate |
title_full | Human T cell activation. I. Monocyte-independent activation and proliferation induced by anti-T3 monoclonal antibodies in the presence of tumor promoter 12-o-tetradecanoyl phorbol-13 acetate |
title_fullStr | Human T cell activation. I. Monocyte-independent activation and proliferation induced by anti-T3 monoclonal antibodies in the presence of tumor promoter 12-o-tetradecanoyl phorbol-13 acetate |
title_full_unstemmed | Human T cell activation. I. Monocyte-independent activation and proliferation induced by anti-T3 monoclonal antibodies in the presence of tumor promoter 12-o-tetradecanoyl phorbol-13 acetate |
title_short | Human T cell activation. I. Monocyte-independent activation and proliferation induced by anti-T3 monoclonal antibodies in the presence of tumor promoter 12-o-tetradecanoyl phorbol-13 acetate |
title_sort | human t cell activation. i. monocyte-independent activation and proliferation induced by anti-t3 monoclonal antibodies in the presence of tumor promoter 12-o-tetradecanoyl phorbol-13 acetate |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189054/ https://www.ncbi.nlm.nih.gov/pubmed/3920341 |