Cargando…

Bacterial cell wall-induced immunosuppression. Role of transforming growth factor beta

Group A streptococcal cell wall (SCW)-injected rats exhibit a profound immunosuppression that persists for months after the initial intraperitoneal injection of SCW. The goal of this study was to determine the mechanisms for the suppressed T lymphocyte proliferative responses in this experimental mo...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189072/
https://www.ncbi.nlm.nih.gov/pubmed/2971758
_version_ 1782146556607070208
collection PubMed
description Group A streptococcal cell wall (SCW)-injected rats exhibit a profound immunosuppression that persists for months after the initial intraperitoneal injection of SCW. The goal of this study was to determine the mechanisms for the suppressed T lymphocyte proliferative responses in this experimental model of chronic inflammation. When spleen cell preparations were depleted of adherent cells, restoration of T cell proliferative responses to Con A and PHA occurred, implicating adherent macrophages in the regulation of immunosuppression. Furthermore, macrophages from SCW-treated animals, when cocultured with normal spleen cells in the presence of Con A or PHA, effectively inhibited the proliferative response. Supernatants from suppressed spleen cell cultures were found to inhibit normal T cell mitogenesis. Taken together, these results implicated a soluble macrophage-derived suppressor factor in the down regulation of T cell proliferation after exposure to SCW in vivo. Subsequent in vitro studies to identify this suppressor molecule(s) revealed the activity to be indistinguishable from the polypeptide transforming growth factor beta (TGF-beta). Furthermore, TGF-beta was identified by immunolocalization within the spleens of SCW-injected animals. The cells within the spleen that stained positively for TGF-beta were phagocytic cells that had ingested, and were presumably activated by, the SCW. These studies document that TGF-beta, previously shown to be a potent immunosuppressive agent in vitro, also effectively inhibits immune function in chronic inflammatory lesions in vivo.
format Text
id pubmed-2189072
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21890722008-04-17 Bacterial cell wall-induced immunosuppression. Role of transforming growth factor beta J Exp Med Articles Group A streptococcal cell wall (SCW)-injected rats exhibit a profound immunosuppression that persists for months after the initial intraperitoneal injection of SCW. The goal of this study was to determine the mechanisms for the suppressed T lymphocyte proliferative responses in this experimental model of chronic inflammation. When spleen cell preparations were depleted of adherent cells, restoration of T cell proliferative responses to Con A and PHA occurred, implicating adherent macrophages in the regulation of immunosuppression. Furthermore, macrophages from SCW-treated animals, when cocultured with normal spleen cells in the presence of Con A or PHA, effectively inhibited the proliferative response. Supernatants from suppressed spleen cell cultures were found to inhibit normal T cell mitogenesis. Taken together, these results implicated a soluble macrophage-derived suppressor factor in the down regulation of T cell proliferation after exposure to SCW in vivo. Subsequent in vitro studies to identify this suppressor molecule(s) revealed the activity to be indistinguishable from the polypeptide transforming growth factor beta (TGF-beta). Furthermore, TGF-beta was identified by immunolocalization within the spleens of SCW-injected animals. The cells within the spleen that stained positively for TGF-beta were phagocytic cells that had ingested, and were presumably activated by, the SCW. These studies document that TGF-beta, previously shown to be a potent immunosuppressive agent in vitro, also effectively inhibits immune function in chronic inflammatory lesions in vivo. The Rockefeller University Press 1988-10-01 /pmc/articles/PMC2189072/ /pubmed/2971758 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Bacterial cell wall-induced immunosuppression. Role of transforming growth factor beta
title Bacterial cell wall-induced immunosuppression. Role of transforming growth factor beta
title_full Bacterial cell wall-induced immunosuppression. Role of transforming growth factor beta
title_fullStr Bacterial cell wall-induced immunosuppression. Role of transforming growth factor beta
title_full_unstemmed Bacterial cell wall-induced immunosuppression. Role of transforming growth factor beta
title_short Bacterial cell wall-induced immunosuppression. Role of transforming growth factor beta
title_sort bacterial cell wall-induced immunosuppression. role of transforming growth factor beta
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189072/
https://www.ncbi.nlm.nih.gov/pubmed/2971758