Cargando…

Mature T-lineage leukemia with growth factor-induced multilineage differentiation

We report an acute T-lymphoblastic leukemia with a predominantly mature CD3+ CD7+ WT31+ phenotype that was induced to differentiate into different cell lineages by various recombinant human growth factors. In the presence of IL-3 or GM-CSF, the leukemic cells gave rise to myeloid and monocytic cells...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189262/
https://www.ncbi.nlm.nih.gov/pubmed/2538542
_version_ 1782146601196716032
collection PubMed
description We report an acute T-lymphoblastic leukemia with a predominantly mature CD3+ CD7+ WT31+ phenotype that was induced to differentiate into different cell lineages by various recombinant human growth factors. In the presence of IL-3 or GM-CSF, the leukemic cells gave rise to myeloid and monocytic cells including terminally differentiated, partially functional, segmented neutrophilic granulocytes as assessed by morphologic, cytochemical, immunophenotypic, and functional criteria. In the presence of IL-2, leukemic granulated lymphoid cells exhibiting MHC-unrestricted cytotoxicity and expressing a CD2+ CD3+ CD5+ CD7+ CD8+ CD33+ WT31+ Leu19+ phenotype arose. Leukemic cell cultures initiated with IL-3 yielded growth factor-independent cells with a mixed lineage phenotype and morphologic and cytochemical evidence of immature blasts. These were T lymphocyte and myeloid surface antigen (CD2,CD3,CD5,CD7,CD13,CD33,WT31) positive. Identical rearrangements of the constant region of the TCR-delta gene and of the joining regions of the TCR-beta, -gamma, and -delta genes were observed in the fresh and all cultured leukemic cells, indicating that they were derived from the same malignant clone. Consistent with the molecular genetic data, the cytogenetic analyses of the GM-CSF-, IL-3-cultured and the growth factor-independent leukemic cells showed the presence of multiple, closely related abnormal clones, all of which had an interstitial deletion of part of the long arm of chromosome 6 and a complex 1;10;12 translocation. In conclusion, these data demonstrate the involvement of a multipotent leukemic precursor cell in this predominantly mature CD2+ CD3+ CD5+ CD7+ WT31+ T-ALL. This multipotent leukemic precursor may be susceptible to various growth factors and respond with ordered differentiation and maturation.
format Text
id pubmed-2189262
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21892622008-04-17 Mature T-lineage leukemia with growth factor-induced multilineage differentiation J Exp Med Articles We report an acute T-lymphoblastic leukemia with a predominantly mature CD3+ CD7+ WT31+ phenotype that was induced to differentiate into different cell lineages by various recombinant human growth factors. In the presence of IL-3 or GM-CSF, the leukemic cells gave rise to myeloid and monocytic cells including terminally differentiated, partially functional, segmented neutrophilic granulocytes as assessed by morphologic, cytochemical, immunophenotypic, and functional criteria. In the presence of IL-2, leukemic granulated lymphoid cells exhibiting MHC-unrestricted cytotoxicity and expressing a CD2+ CD3+ CD5+ CD7+ CD8+ CD33+ WT31+ Leu19+ phenotype arose. Leukemic cell cultures initiated with IL-3 yielded growth factor-independent cells with a mixed lineage phenotype and morphologic and cytochemical evidence of immature blasts. These were T lymphocyte and myeloid surface antigen (CD2,CD3,CD5,CD7,CD13,CD33,WT31) positive. Identical rearrangements of the constant region of the TCR-delta gene and of the joining regions of the TCR-beta, -gamma, and -delta genes were observed in the fresh and all cultured leukemic cells, indicating that they were derived from the same malignant clone. Consistent with the molecular genetic data, the cytogenetic analyses of the GM-CSF-, IL-3-cultured and the growth factor-independent leukemic cells showed the presence of multiple, closely related abnormal clones, all of which had an interstitial deletion of part of the long arm of chromosome 6 and a complex 1;10;12 translocation. In conclusion, these data demonstrate the involvement of a multipotent leukemic precursor cell in this predominantly mature CD2+ CD3+ CD5+ CD7+ WT31+ T-ALL. This multipotent leukemic precursor may be susceptible to various growth factors and respond with ordered differentiation and maturation. The Rockefeller University Press 1989-03-01 /pmc/articles/PMC2189262/ /pubmed/2538542 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Mature T-lineage leukemia with growth factor-induced multilineage differentiation
title Mature T-lineage leukemia with growth factor-induced multilineage differentiation
title_full Mature T-lineage leukemia with growth factor-induced multilineage differentiation
title_fullStr Mature T-lineage leukemia with growth factor-induced multilineage differentiation
title_full_unstemmed Mature T-lineage leukemia with growth factor-induced multilineage differentiation
title_short Mature T-lineage leukemia with growth factor-induced multilineage differentiation
title_sort mature t-lineage leukemia with growth factor-induced multilineage differentiation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189262/
https://www.ncbi.nlm.nih.gov/pubmed/2538542