Cargando…

Regulation of macrophage functions by L-arginine

Sites of inflammation with prominent macrophage infiltration, such as wounds and certain tumors, are uniquely deficient in free arginine. The effects of arginine availability on macrophage physiology were investigated. When cultured in media containing less than 0.1 mM L- arginine, rat resident peri...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189280/
https://www.ncbi.nlm.nih.gov/pubmed/2538541
_version_ 1782146605443448832
collection PubMed
description Sites of inflammation with prominent macrophage infiltration, such as wounds and certain tumors, are uniquely deficient in free arginine. The effects of arginine availability on macrophage physiology were investigated. When cultured in media containing less than 0.1 mM L- arginine, rat resident peritoneal macrophages exhibited enhanced spreading, tumor cytotoxicity, superoxide production, phagocytosis, and protein synthesis. Thus, arginine concentrations similar to those found in sites of inflammation can augment macrophage functions, while those found in plasma (approximately 0.1 mM) and in commonly used culture media (0.4 to 1.2 mM) are inhibitory. Culture in homoarginine, but not D-arginine, ornithine, citrulline, urea, histidine, or lysine also inhibited macrophage tumor cytotoxicity, indicating the specificity of the effect. In contrast to resident macrophages, the tumor cytotoxicity of peritoneal macrophages obtained after C. parvum injection was suppressed by culture in arginine-deficient media. However, L-arginine- deficient media enhanced all other activation-associated functions in C. parvum-elicited macrophages as in resident cells. Arginine-free wound fluid promoted resident macrophage tumoricidal activity when compared with rat serum, and again, the addition of L-arginine was inhibitory. The marked effects of L-arginine availability on macrophage functions, together with the knowledge that these cells modify the extracellular arginine concentration in sites of inflammation through arginase, provide evidence for an autoregulatory mechanism of macrophage activation.
format Text
id pubmed-2189280
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21892802008-04-17 Regulation of macrophage functions by L-arginine J Exp Med Articles Sites of inflammation with prominent macrophage infiltration, such as wounds and certain tumors, are uniquely deficient in free arginine. The effects of arginine availability on macrophage physiology were investigated. When cultured in media containing less than 0.1 mM L- arginine, rat resident peritoneal macrophages exhibited enhanced spreading, tumor cytotoxicity, superoxide production, phagocytosis, and protein synthesis. Thus, arginine concentrations similar to those found in sites of inflammation can augment macrophage functions, while those found in plasma (approximately 0.1 mM) and in commonly used culture media (0.4 to 1.2 mM) are inhibitory. Culture in homoarginine, but not D-arginine, ornithine, citrulline, urea, histidine, or lysine also inhibited macrophage tumor cytotoxicity, indicating the specificity of the effect. In contrast to resident macrophages, the tumor cytotoxicity of peritoneal macrophages obtained after C. parvum injection was suppressed by culture in arginine-deficient media. However, L-arginine- deficient media enhanced all other activation-associated functions in C. parvum-elicited macrophages as in resident cells. Arginine-free wound fluid promoted resident macrophage tumoricidal activity when compared with rat serum, and again, the addition of L-arginine was inhibitory. The marked effects of L-arginine availability on macrophage functions, together with the knowledge that these cells modify the extracellular arginine concentration in sites of inflammation through arginase, provide evidence for an autoregulatory mechanism of macrophage activation. The Rockefeller University Press 1989-03-01 /pmc/articles/PMC2189280/ /pubmed/2538541 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Regulation of macrophage functions by L-arginine
title Regulation of macrophage functions by L-arginine
title_full Regulation of macrophage functions by L-arginine
title_fullStr Regulation of macrophage functions by L-arginine
title_full_unstemmed Regulation of macrophage functions by L-arginine
title_short Regulation of macrophage functions by L-arginine
title_sort regulation of macrophage functions by l-arginine
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189280/
https://www.ncbi.nlm.nih.gov/pubmed/2538541