Cargando…
Replication of human immunodeficiency virus in monocytes. Granulocyte/macrophage colony-stimulating factor (GM-CSF) potentiates viral production yet enhances the antiviral effect mediated by 3'-azido- 2'3'-dideoxythymidine (AZT) and other dideoxynucleoside congeners of thymidine
We have investigated the influence of granulocyte-macrophage CSF (GM- CSF) on the replication of HIV-1 in cells of monocyte/macrophage (M/M) lineage, and its effect on the anti-HIV activity of several 2'3'- dideoxynucleoside congeners of thymidine in these cells in vitro. We found that rep...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1989
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189284/ https://www.ncbi.nlm.nih.gov/pubmed/2538549 |
Sumario: | We have investigated the influence of granulocyte-macrophage CSF (GM- CSF) on the replication of HIV-1 in cells of monocyte/macrophage (M/M) lineage, and its effect on the anti-HIV activity of several 2'3'- dideoxynucleoside congeners of thymidine in these cells in vitro. We found that replication of both HTLV-IIIBa-L (a monocytotropic strain of HIV-1) and HTLV-IIIB (a lymphocytotropic strain) is markedly enhanced in M/M, but not in lymphocytes exposed to GM-CSF in culture. Moreover, GM-CSF reduced the dose of HIV required to obtain productive infection in M/M. Even in the face of this increased infection, GM-CSF also enhanced the net anti-HIV activity of 3'-azido-2'3'-dideoxythymidine (AZT) and several related congeners: 2'3'-dideoxythymidine (ddT), 2'3'- dideoxy-2'3'-didehydrothymidine (D4T), and 3'-azido-2'3'-dideoxyuridine (AZddU). Inhibition of viral replication in GM-CSF-exposed M/M was achieved with concentrations of AZT and related drugs, which were 10- 100 times lower than those inhibitory for HIV-1 in monocytes in the absence of GM-CSF. Other dideoxynucleosides not related to AZT showed unchanged or decreased anti-HIV activity in GM-CSF-exposed M/M. To investigate the possible biochemical basis for these effects, we evaluated the metabolism of several drugs in M/M exposed to GM-CSF. We observed in these cells markedly increased levels of both parent and mono-, di-, and triphosphate anabolites of AZT and D4T compared with M/M not exposed to GM-CSF. By contrast, only limited increases of endogenous competing 2'-deoxynucleoside-5'-triphosphate pools were observed after GM-CSF exposure. Thus, the ratio of AZT-5'- triphosphate/2'-deoxythymidine-5'-triphosphate and 2'3'-dideoxy-2'3'- didehydrothymidine-5'-triphosphate/2'-deoxythymi dine- 5'-triphosphate is several-fold higher in GM-CSF-exposed M/M, and this may account for the enhanced activity of such drugs in these cells. Taken together, these findings suggest that GM-CSF increases HIV-1 replication in M/M, while at the same time enhancing the anti-HIV activity of AZT and related congeners in these cells. These results may have implications in exploring new therapeutic strategies in patients with severe HIV infection. |
---|