Cargando…
A beta polymorphic residues responsible for class II molecule recognition by alloreactive T cells
In an effort to characterize the ligand that is bound by T helper lymphocyte antigen receptors, we have begun to identify class II polymorphic residues that comprise part of the allospecific TCR binding sites. Site-directed mutagenesis was used to construct mutant Ak beta (Ak beta*) genes that encod...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1989
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189300/ https://www.ncbi.nlm.nih.gov/pubmed/2469762 |
_version_ | 1782146610091786240 |
---|---|
collection | PubMed |
description | In an effort to characterize the ligand that is bound by T helper lymphocyte antigen receptors, we have begun to identify class II polymorphic residues that comprise part of the allospecific TCR binding sites. Site-directed mutagenesis was used to construct mutant Ak beta (Ak beta*) genes that encode polypeptides into which single or multiple residues of the Ad beta polypeptide have been substituted in the beta 1 domain. A panel of cloned cell lines expressing the mutant Ak beta* Ak alpha or Ak beta* Ad alpha molecules was analyzed for the ability to stimulate Ak or Ad alloreactive T cell hybridomas. Substitution of d for k residues at specific positions in the beta 1 domain resulted not only in the loss of epitopes recognized by Ak-reactive T cells but, more importantly, in the gain of epitopes recognized by Ad-reactive T cells. Some of the polymorphic residues identified as contributing to the T cell epitopes are the same residues that contribute to the serologically immunodominant epitope. Other T cell epitopes map to positions predicted to be located either in an alpha-helix forming one side, or in a beta-pleated sheet forming the bottom of the putative antigen binding site. Thus, unlike serologic epitopes, TCR epitopes can be determined by A beta polymorphic residues in many different regions of the beta 1 domain and frequently depend upon contributions of A alpha polymorphic residues. |
format | Text |
id | pubmed-2189300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1989 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21893002008-04-17 A beta polymorphic residues responsible for class II molecule recognition by alloreactive T cells J Exp Med Articles In an effort to characterize the ligand that is bound by T helper lymphocyte antigen receptors, we have begun to identify class II polymorphic residues that comprise part of the allospecific TCR binding sites. Site-directed mutagenesis was used to construct mutant Ak beta (Ak beta*) genes that encode polypeptides into which single or multiple residues of the Ad beta polypeptide have been substituted in the beta 1 domain. A panel of cloned cell lines expressing the mutant Ak beta* Ak alpha or Ak beta* Ad alpha molecules was analyzed for the ability to stimulate Ak or Ad alloreactive T cell hybridomas. Substitution of d for k residues at specific positions in the beta 1 domain resulted not only in the loss of epitopes recognized by Ak-reactive T cells but, more importantly, in the gain of epitopes recognized by Ad-reactive T cells. Some of the polymorphic residues identified as contributing to the T cell epitopes are the same residues that contribute to the serologically immunodominant epitope. Other T cell epitopes map to positions predicted to be located either in an alpha-helix forming one side, or in a beta-pleated sheet forming the bottom of the putative antigen binding site. Thus, unlike serologic epitopes, TCR epitopes can be determined by A beta polymorphic residues in many different regions of the beta 1 domain and frequently depend upon contributions of A alpha polymorphic residues. The Rockefeller University Press 1989-05-01 /pmc/articles/PMC2189300/ /pubmed/2469762 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles A beta polymorphic residues responsible for class II molecule recognition by alloreactive T cells |
title | A beta polymorphic residues responsible for class II molecule recognition by alloreactive T cells |
title_full | A beta polymorphic residues responsible for class II molecule recognition by alloreactive T cells |
title_fullStr | A beta polymorphic residues responsible for class II molecule recognition by alloreactive T cells |
title_full_unstemmed | A beta polymorphic residues responsible for class II molecule recognition by alloreactive T cells |
title_short | A beta polymorphic residues responsible for class II molecule recognition by alloreactive T cells |
title_sort | beta polymorphic residues responsible for class ii molecule recognition by alloreactive t cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189300/ https://www.ncbi.nlm.nih.gov/pubmed/2469762 |