Cargando…
Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes
The structural heterogeneity of the human low affinity receptor for IgG, FcRII(CD32), has been elucidated through the isolation, characterization, and expression of cDNA clones derived from myeloid and lymphoid RNA. These clones predict amino acid sequences consistent with integral membrane glycopro...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1989
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189488/ https://www.ncbi.nlm.nih.gov/pubmed/2529342 |
_version_ | 1782146653913874432 |
---|---|
collection | PubMed |
description | The structural heterogeneity of the human low affinity receptor for IgG, FcRII(CD32), has been elucidated through the isolation, characterization, and expression of cDNA clones derived from myeloid and lymphoid RNA. These clones predict amino acid sequences consistent with integral membrane glycoproteins with single membrane spanning domains. The extracellular domains display sequence homology to other Fc gamma Rs and members of the Ig supergene family. A minimum of three genes (Fc gamma RIIa, IIa', and Fc gamma RIIb) encode these transcripts, which demonstrate highly related extracellular and membrane spanning domains. IIa/IIa' differ substantially in the intracytoplasmic domain from IIb. Alternative splicing of the IIb gene generates further heterogeneity in both NH2- and COOH-terminal domains of the predicted proteins. Comparison to the murine homologues of these molecules reveals a high degree of conservation between the products of one of these genes, Fc gamma RIIb, and the murine beta gene in primary sequence, splicing pattern, and tissue distribution. In contrast, the sequence of IIa' indicates its relationship to the beta-like genes, with mutation giving rise to a novel cytoplasmic domain, while IIa is a chimera of both alpha- and beta-like genes. Expression of these cDNA molecules by transfection results in the appearance of IgG binding molecules that bear the epitopes defined by the FcRII(CD32) mAbs previously described. |
format | Text |
id | pubmed-2189488 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1989 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21894882008-04-17 Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes J Exp Med Articles The structural heterogeneity of the human low affinity receptor for IgG, FcRII(CD32), has been elucidated through the isolation, characterization, and expression of cDNA clones derived from myeloid and lymphoid RNA. These clones predict amino acid sequences consistent with integral membrane glycoproteins with single membrane spanning domains. The extracellular domains display sequence homology to other Fc gamma Rs and members of the Ig supergene family. A minimum of three genes (Fc gamma RIIa, IIa', and Fc gamma RIIb) encode these transcripts, which demonstrate highly related extracellular and membrane spanning domains. IIa/IIa' differ substantially in the intracytoplasmic domain from IIb. Alternative splicing of the IIb gene generates further heterogeneity in both NH2- and COOH-terminal domains of the predicted proteins. Comparison to the murine homologues of these molecules reveals a high degree of conservation between the products of one of these genes, Fc gamma RIIb, and the murine beta gene in primary sequence, splicing pattern, and tissue distribution. In contrast, the sequence of IIa' indicates its relationship to the beta-like genes, with mutation giving rise to a novel cytoplasmic domain, while IIa is a chimera of both alpha- and beta-like genes. Expression of these cDNA molecules by transfection results in the appearance of IgG binding molecules that bear the epitopes defined by the FcRII(CD32) mAbs previously described. The Rockefeller University Press 1989-10-01 /pmc/articles/PMC2189488/ /pubmed/2529342 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes |
title | Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes |
title_full | Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes |
title_fullStr | Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes |
title_full_unstemmed | Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes |
title_short | Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes |
title_sort | structure and expression of human igg fcrii(cd32). functional heterogeneity is encoded by the alternatively spliced products of multiple genes |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189488/ https://www.ncbi.nlm.nih.gov/pubmed/2529342 |