Cargando…

Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition

We have investigated the role of the carbohydrate moiety on the HLA-B7 molecule in mAb and CTL recognition using oligonucleotide-directed mutagenesis and gene transfer techniques. A conservative substitution of asparagine to glutamine at amino acid 86 in HLA-B7 was created to abolish the unique glyc...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189648/
https://www.ncbi.nlm.nih.gov/pubmed/2445888
_version_ 1782146679571480576
collection PubMed
description We have investigated the role of the carbohydrate moiety on the HLA-B7 molecule in mAb and CTL recognition using oligonucleotide-directed mutagenesis and gene transfer techniques. A conservative substitution of asparagine to glutamine at amino acid 86 in HLA-B7 was created to abolish the unique glycosylation site present on all HLA molecules. A second mutant B7 molecule was made by substituting asparagine-aspartic acid-threonine for the resident lysine-aspartic acid/lysine tripeptide at amino acids 176-178, thus creating an N-linked glycan at amino acid 176, which is additionally present on all known murine H-2 class I antigens. Upon gene transfer into mouse and human cell recipients, the HLA-B7M176+ mutant and normal HLA-B7 expressed identical levels of surface protein. However, the binding of two mAbs (MB40.2 and MB40.3) thought to recognize different epitopes of the HLA-B7 molecule was completely eliminated. In contrast, the HLA-B7M86- mutant displayed no surface expression (mouse L cells) or minimal surface expression (human RD cells or mouse L cells coexpressing human beta 2 microglobulin [beta 2m]) after indirect immunofluorescence (IIF) and flow cytometric analysis with a panel of 12 HLA-B7 mAb reactive with monomorphic and polymorphic determinants. Immunoprecipitation analysis demonstrated that intracellular denatured mutant protein was present. Tunicamycin treatment did not rescue the expression of HLA-B7M86- antigens to the cell surface; while interferon did induce higher levels of surface expression. Tunicamycin treatment also did not allow binding of the mAbs MB40.2 or MB40.3 to HLA-B7M176+ mutant antigens, suggesting that the carbohydrate moiety itself was not directly involved in the recognition or conformation of these mAb epitopes. Further mutation of the B7M86- molecule to create a glycan moiety at amino acid position 176 (B7M86-/176+) did not rescue normal levels of surface expression. Finally, neither mutation was seen to affect recognition by a panel of 12 allospecific CTL clones. The low expression of HLA-B7M86- on the surface of human cell transfectants was sufficient to achieve lysis, albeit at a reduced efficiency, and lysis could be increased by interferon induction of higher levels of expression. Thus, the carbohydrate moiety on HLA antigens plays a minimal or nonexistent role in recognition by available mAb and allospecific CTL clones.
format Text
id pubmed-2189648
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21896482008-04-17 Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition J Exp Med Articles We have investigated the role of the carbohydrate moiety on the HLA-B7 molecule in mAb and CTL recognition using oligonucleotide-directed mutagenesis and gene transfer techniques. A conservative substitution of asparagine to glutamine at amino acid 86 in HLA-B7 was created to abolish the unique glycosylation site present on all HLA molecules. A second mutant B7 molecule was made by substituting asparagine-aspartic acid-threonine for the resident lysine-aspartic acid/lysine tripeptide at amino acids 176-178, thus creating an N-linked glycan at amino acid 176, which is additionally present on all known murine H-2 class I antigens. Upon gene transfer into mouse and human cell recipients, the HLA-B7M176+ mutant and normal HLA-B7 expressed identical levels of surface protein. However, the binding of two mAbs (MB40.2 and MB40.3) thought to recognize different epitopes of the HLA-B7 molecule was completely eliminated. In contrast, the HLA-B7M86- mutant displayed no surface expression (mouse L cells) or minimal surface expression (human RD cells or mouse L cells coexpressing human beta 2 microglobulin [beta 2m]) after indirect immunofluorescence (IIF) and flow cytometric analysis with a panel of 12 HLA-B7 mAb reactive with monomorphic and polymorphic determinants. Immunoprecipitation analysis demonstrated that intracellular denatured mutant protein was present. Tunicamycin treatment did not rescue the expression of HLA-B7M86- antigens to the cell surface; while interferon did induce higher levels of surface expression. Tunicamycin treatment also did not allow binding of the mAbs MB40.2 or MB40.3 to HLA-B7M176+ mutant antigens, suggesting that the carbohydrate moiety itself was not directly involved in the recognition or conformation of these mAb epitopes. Further mutation of the B7M86- molecule to create a glycan moiety at amino acid position 176 (B7M86-/176+) did not rescue normal levels of surface expression. Finally, neither mutation was seen to affect recognition by a panel of 12 allospecific CTL clones. The low expression of HLA-B7M86- on the surface of human cell transfectants was sufficient to achieve lysis, albeit at a reduced efficiency, and lysis could be increased by interferon induction of higher levels of expression. Thus, the carbohydrate moiety on HLA antigens plays a minimal or nonexistent role in recognition by available mAb and allospecific CTL clones. The Rockefeller University Press 1987-11-01 /pmc/articles/PMC2189648/ /pubmed/2445888 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition
title Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition
title_full Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition
title_fullStr Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition
title_full_unstemmed Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition
title_short Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition
title_sort site-directed mutagenesis of class i hla genes. role of glycosylation in surface expression and functional recognition
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189648/
https://www.ncbi.nlm.nih.gov/pubmed/2445888