Cargando…

Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized

Lethally irradiated C.B-17 +/+, C.B-17 scid/scid (severe combined immunodeficiency, SCID), BALB/c-nu/nu (nude), and C57BL/6 (B6) mice were challenged with H-2-homozygous or H-2-heterozygous totally allogeneic bone marrow cell (BMC) grafts. Some of the irradiated mice were immunized simultaneously wi...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189655/
https://www.ncbi.nlm.nih.gov/pubmed/3316472
_version_ 1782146681187336192
collection PubMed
description Lethally irradiated C.B-17 +/+, C.B-17 scid/scid (severe combined immunodeficiency, SCID), BALB/c-nu/nu (nude), and C57BL/6 (B6) mice were challenged with H-2-homozygous or H-2-heterozygous totally allogeneic bone marrow cell (BMC) grafts. Some of the irradiated mice were immunized simultaneously with large numbers of irradiated marrow and spleen cells syngeneic with the viable BMC transferred. Irradiated SCID and nude mice, devoid of T cells but with normal NK cell function, were able to reject H-2-homozygous BMC grafts within 4 d. However, they were unable to reject H-2-heterozygous BMC allografts by 7 d even if they were immunized. B6 and C.B-17 +/+ mice were able to reject H-2 heterozygous BMC allografts by 7-8 d, but not as early as 4 d, if they were immunized. The rejection of H-2-homozygous BMC on day 4 was inhibited by administration of anti-NK-1.1 antibodies, but not by anti- Lyt-2 antibodies. Conversely, the rejection of H-2-heterozygous allogeneic BMC on day 8 was prevented by anti-Lyt-2 but not by anti-NK- 1.1 antibodies. The data indicate that both NK cells and Lyt-2+ T cells can mediate rejection of allogeneic BMC acutely, even after exposure of mice to lethal doses of ionizing irradiation. NK cells appear to recognize Hemopoietic histocompatibility (Hh) antigens on H-2 homozygous stem cells. The inability of SCID and nude mice to reject H- 2 heterozygous totally allogeneic BMC indicate that NK cells do not survey donor marrow cells for self H-2 antigens and reject those cells that express nonself H-2 antigens. The T cells presumably recognize conventional H-2 antigens (probably class I) under these conditions.
format Text
id pubmed-2189655
institution National Center for Biotechnology Information
language English
publishDate 1987
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21896552008-04-17 Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized J Exp Med Articles Lethally irradiated C.B-17 +/+, C.B-17 scid/scid (severe combined immunodeficiency, SCID), BALB/c-nu/nu (nude), and C57BL/6 (B6) mice were challenged with H-2-homozygous or H-2-heterozygous totally allogeneic bone marrow cell (BMC) grafts. Some of the irradiated mice were immunized simultaneously with large numbers of irradiated marrow and spleen cells syngeneic with the viable BMC transferred. Irradiated SCID and nude mice, devoid of T cells but with normal NK cell function, were able to reject H-2-homozygous BMC grafts within 4 d. However, they were unable to reject H-2-heterozygous BMC allografts by 7 d even if they were immunized. B6 and C.B-17 +/+ mice were able to reject H-2 heterozygous BMC allografts by 7-8 d, but not as early as 4 d, if they were immunized. The rejection of H-2-homozygous BMC on day 4 was inhibited by administration of anti-NK-1.1 antibodies, but not by anti- Lyt-2 antibodies. Conversely, the rejection of H-2-heterozygous allogeneic BMC on day 8 was prevented by anti-Lyt-2 but not by anti-NK- 1.1 antibodies. The data indicate that both NK cells and Lyt-2+ T cells can mediate rejection of allogeneic BMC acutely, even after exposure of mice to lethal doses of ionizing irradiation. NK cells appear to recognize Hemopoietic histocompatibility (Hh) antigens on H-2 homozygous stem cells. The inability of SCID and nude mice to reject H- 2 heterozygous totally allogeneic BMC indicate that NK cells do not survey donor marrow cells for self H-2 antigens and reject those cells that express nonself H-2 antigens. The T cells presumably recognize conventional H-2 antigens (probably class I) under these conditions. The Rockefeller University Press 1987-11-01 /pmc/articles/PMC2189655/ /pubmed/3316472 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized
title Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized
title_full Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized
title_fullStr Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized
title_full_unstemmed Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized
title_short Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized
title_sort acute rejection of murine bone marrow allografts by natural killer cells and t cells. differences in kinetics and target antigens recognized
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189655/
https://www.ncbi.nlm.nih.gov/pubmed/3316472