Cargando…

Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein- Barr virus-positive Burkitt's lymphoma underlies tumor cell escape from virus-specific T cell surveillance

Some EBV+ BL cell lines continue to grow as single cells on in vitro passage, show an unusually restricted expression of EBV-latent genes and retain a BL biopsy-like cell surface phenotype (group I/II lines); others change to growth in aggregates, show a broader pattern of virus latent gene expressi...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189677/
https://www.ncbi.nlm.nih.gov/pubmed/2898508
_version_ 1782146686340038656
collection PubMed
description Some EBV+ BL cell lines continue to grow as single cells on in vitro passage, show an unusually restricted expression of EBV-latent genes and retain a BL biopsy-like cell surface phenotype (group I/II lines); others change to growth in aggregates, show a broader pattern of virus latent gene expression, and develop a cell surface phenotype more characteristic of EBV-transformed LCL (group III lines). Here we show that the cell surface adhesion molecules LFA-1, ICAM-1, and LFA-3 are expressed at very low levels, if at all, on group I/II lines and are coordinately upregulated as BL lines move towards group III. The change to growth in aggregates reflects the increasing availability of LFA-1 and ICAM-1, the two ligands whose mutual interaction underlies homotypic BL cell adhesion in vitro. The low levels of ICAM-1 and LFA-3 on group I/II BL cell lines are also associated with an impaired ability to interact with EBV-specific CTL in the antigen-independent phase of effector/target conjugation. mAb blocking studies show that the small number of conjugates that are formed with group I/II BL targets involve the LFA-1/ICAM-1 adhesion pathway but not the LFA-3 pathway; in contrast, both pathways contribute to the efficient conjugate formation shown by group III BL or LCL targets. Earlier work identified one group III line, WW1 BL, as unusual since is expressed the full spectrum of EBV-latent proteins yet remained insensitive to lysis by EBV-specific CTL. Here we show that this line has an anomalous pattern of adhesion molecule expression with high levels of LFA-1 and ICAM-1 in the absence of detectable LFA-3. The WW1 BL cells form conjugates with EBV-specific CTL through the LFA-1/ICAM-1 pathway, but in the absence of a target LFA-3/effector CD2 interaction these conjugates do not achieve target cell lysis. This may reflect an important role for target LFA-3 molecules in activating EBV-specific CTL function. From these in vitro studies, we postulate that downregulation of the adhesion molecules LFA-3 and ICAM-1 on EBV+ BL underlies the ability of the malignant clone to evade EBV-specific T cell surveillance in vivo.
format Text
id pubmed-2189677
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21896772008-04-17 Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein- Barr virus-positive Burkitt's lymphoma underlies tumor cell escape from virus-specific T cell surveillance J Exp Med Articles Some EBV+ BL cell lines continue to grow as single cells on in vitro passage, show an unusually restricted expression of EBV-latent genes and retain a BL biopsy-like cell surface phenotype (group I/II lines); others change to growth in aggregates, show a broader pattern of virus latent gene expression, and develop a cell surface phenotype more characteristic of EBV-transformed LCL (group III lines). Here we show that the cell surface adhesion molecules LFA-1, ICAM-1, and LFA-3 are expressed at very low levels, if at all, on group I/II lines and are coordinately upregulated as BL lines move towards group III. The change to growth in aggregates reflects the increasing availability of LFA-1 and ICAM-1, the two ligands whose mutual interaction underlies homotypic BL cell adhesion in vitro. The low levels of ICAM-1 and LFA-3 on group I/II BL cell lines are also associated with an impaired ability to interact with EBV-specific CTL in the antigen-independent phase of effector/target conjugation. mAb blocking studies show that the small number of conjugates that are formed with group I/II BL targets involve the LFA-1/ICAM-1 adhesion pathway but not the LFA-3 pathway; in contrast, both pathways contribute to the efficient conjugate formation shown by group III BL or LCL targets. Earlier work identified one group III line, WW1 BL, as unusual since is expressed the full spectrum of EBV-latent proteins yet remained insensitive to lysis by EBV-specific CTL. Here we show that this line has an anomalous pattern of adhesion molecule expression with high levels of LFA-1 and ICAM-1 in the absence of detectable LFA-3. The WW1 BL cells form conjugates with EBV-specific CTL through the LFA-1/ICAM-1 pathway, but in the absence of a target LFA-3/effector CD2 interaction these conjugates do not achieve target cell lysis. This may reflect an important role for target LFA-3 molecules in activating EBV-specific CTL function. From these in vitro studies, we postulate that downregulation of the adhesion molecules LFA-3 and ICAM-1 on EBV+ BL underlies the ability of the malignant clone to evade EBV-specific T cell surveillance in vivo. The Rockefeller University Press 1988-06-01 /pmc/articles/PMC2189677/ /pubmed/2898508 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein- Barr virus-positive Burkitt's lymphoma underlies tumor cell escape from virus-specific T cell surveillance
title Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein- Barr virus-positive Burkitt's lymphoma underlies tumor cell escape from virus-specific T cell surveillance
title_full Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein- Barr virus-positive Burkitt's lymphoma underlies tumor cell escape from virus-specific T cell surveillance
title_fullStr Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein- Barr virus-positive Burkitt's lymphoma underlies tumor cell escape from virus-specific T cell surveillance
title_full_unstemmed Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein- Barr virus-positive Burkitt's lymphoma underlies tumor cell escape from virus-specific T cell surveillance
title_short Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein- Barr virus-positive Burkitt's lymphoma underlies tumor cell escape from virus-specific T cell surveillance
title_sort downregulation of cell adhesion molecules lfa-3 and icam-1 in epstein- barr virus-positive burkitt's lymphoma underlies tumor cell escape from virus-specific t cell surveillance
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189677/
https://www.ncbi.nlm.nih.gov/pubmed/2898508