Cargando…

Expression of genetically determined diabetes and insulitis in the nonobese diabetic (NOD) mouse at the level of bone marrow-derived cells. Transfer of diabetes and insulitis to nondiabetic (NOD X B10) F1 mice with bone marrow cells from NOD mice

The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by at least three recessive loci, including one linked to the MHC. To determine whether any of these genetic loci exert their effects via the immune system, radiation bone marrow chimeras were constructed in wh...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189678/
https://www.ncbi.nlm.nih.gov/pubmed/3290380
_version_ 1782146686571773952
collection PubMed
description The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by at least three recessive loci, including one linked to the MHC. To determine whether any of these genetic loci exert their effects via the immune system, radiation bone marrow chimeras were constructed in which (NOD X B10)F1-irradiated recipients were reconstituted with NOD bone marrow cells. Unmanipulated (NOD X B10)F1 mice, or irradiated F1 mice reconstituted with F1 or B10 bone marrow, did not display insulitis or diabetes. In contrast, insulitis was observed in a majority of the NOD----F1 chimeras and diabetes developed in 21% of the mice. These data demonstrate that expression of the diabetic phenotype in the NOD mouse is dependent on NOD-derived hematopoietic stem cells. Diabetogenic genes in the NOD mouse do not appear to function at the level of the insulin-producing beta cells since NOD----F1 chimeras not only developed insulitis and diabetes but also rejected beta cells within pancreas transplants from newborn B10 mice. These data suggest that the beta cells of the NOD mouse do not express a unique antigenic determinant that is the target of the autoimmune response.
format Text
id pubmed-2189678
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21896782008-04-17 Expression of genetically determined diabetes and insulitis in the nonobese diabetic (NOD) mouse at the level of bone marrow-derived cells. Transfer of diabetes and insulitis to nondiabetic (NOD X B10) F1 mice with bone marrow cells from NOD mice J Exp Med Articles The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by at least three recessive loci, including one linked to the MHC. To determine whether any of these genetic loci exert their effects via the immune system, radiation bone marrow chimeras were constructed in which (NOD X B10)F1-irradiated recipients were reconstituted with NOD bone marrow cells. Unmanipulated (NOD X B10)F1 mice, or irradiated F1 mice reconstituted with F1 or B10 bone marrow, did not display insulitis or diabetes. In contrast, insulitis was observed in a majority of the NOD----F1 chimeras and diabetes developed in 21% of the mice. These data demonstrate that expression of the diabetic phenotype in the NOD mouse is dependent on NOD-derived hematopoietic stem cells. Diabetogenic genes in the NOD mouse do not appear to function at the level of the insulin-producing beta cells since NOD----F1 chimeras not only developed insulitis and diabetes but also rejected beta cells within pancreas transplants from newborn B10 mice. These data suggest that the beta cells of the NOD mouse do not express a unique antigenic determinant that is the target of the autoimmune response. The Rockefeller University Press 1988-06-01 /pmc/articles/PMC2189678/ /pubmed/3290380 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Expression of genetically determined diabetes and insulitis in the nonobese diabetic (NOD) mouse at the level of bone marrow-derived cells. Transfer of diabetes and insulitis to nondiabetic (NOD X B10) F1 mice with bone marrow cells from NOD mice
title Expression of genetically determined diabetes and insulitis in the nonobese diabetic (NOD) mouse at the level of bone marrow-derived cells. Transfer of diabetes and insulitis to nondiabetic (NOD X B10) F1 mice with bone marrow cells from NOD mice
title_full Expression of genetically determined diabetes and insulitis in the nonobese diabetic (NOD) mouse at the level of bone marrow-derived cells. Transfer of diabetes and insulitis to nondiabetic (NOD X B10) F1 mice with bone marrow cells from NOD mice
title_fullStr Expression of genetically determined diabetes and insulitis in the nonobese diabetic (NOD) mouse at the level of bone marrow-derived cells. Transfer of diabetes and insulitis to nondiabetic (NOD X B10) F1 mice with bone marrow cells from NOD mice
title_full_unstemmed Expression of genetically determined diabetes and insulitis in the nonobese diabetic (NOD) mouse at the level of bone marrow-derived cells. Transfer of diabetes and insulitis to nondiabetic (NOD X B10) F1 mice with bone marrow cells from NOD mice
title_short Expression of genetically determined diabetes and insulitis in the nonobese diabetic (NOD) mouse at the level of bone marrow-derived cells. Transfer of diabetes and insulitis to nondiabetic (NOD X B10) F1 mice with bone marrow cells from NOD mice
title_sort expression of genetically determined diabetes and insulitis in the nonobese diabetic (nod) mouse at the level of bone marrow-derived cells. transfer of diabetes and insulitis to nondiabetic (nod x b10) f1 mice with bone marrow cells from nod mice
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189678/
https://www.ncbi.nlm.nih.gov/pubmed/3290380