Cargando…
The dynamics of granuloma formation in experimental visceral leishmaniasis
We have examined the temporal sequence of events leading to the formation of hepatic granulomas after the intravenous injection of L. donovani amastigotes into BALB/c mice. Parasite ingestion by permissive Kupffer cells (KC) occurred promptly, and local KC aggregations were the foci about which gran...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1988
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189681/ https://www.ncbi.nlm.nih.gov/pubmed/3290381 |
_version_ | 1782146687268028416 |
---|---|
collection | PubMed |
description | We have examined the temporal sequence of events leading to the formation of hepatic granulomas after the intravenous injection of L. donovani amastigotes into BALB/c mice. Parasite ingestion by permissive Kupffer cells (KC) occurred promptly, and local KC aggregations were the foci about which granulomas were subsequently formed. Infected KC were recognized by the uptake of colloidal carbon and the expression of the macrophage-specific antigen recognized by F4/80 mAb. Peroxidase- positive granulocytes migrated rapidly and were followed by monocytes and L3T4+ T cells that enclosed the infected KC. Thereafter, Ly-2+ T cells were prominent members of the granulomatous lymphoid population. Parasites multiplied until 4 wk, and then a prompt reduction in infected cells occurred. This was associated with a sharp decline in the L3T4+ T cells of the granulomas and the maintenance of the Ly-2+ subset. In comparison, athymic nu/nu mice developed smaller, more slowly appearing granulomas that contained granulocytes and monocytes and exhibited progressive parasite replication. Upon rechallenge, the entire process was completed in 2 wk, and infected KC in the euthymic mice were never observed. We hypothesize that the effectiveness of the granulomatous response requires the destruction of parasitized host cells (KC), in a lymphokine rich environment. We further suggest that the Ly-2+ T cell serves as an important effector cell in this process, either by direct cytotoxicity or by supporting the cytotoxic potential of other cell types in the granuloma. |
format | Text |
id | pubmed-2189681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1988 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21896812008-04-17 The dynamics of granuloma formation in experimental visceral leishmaniasis J Exp Med Articles We have examined the temporal sequence of events leading to the formation of hepatic granulomas after the intravenous injection of L. donovani amastigotes into BALB/c mice. Parasite ingestion by permissive Kupffer cells (KC) occurred promptly, and local KC aggregations were the foci about which granulomas were subsequently formed. Infected KC were recognized by the uptake of colloidal carbon and the expression of the macrophage-specific antigen recognized by F4/80 mAb. Peroxidase- positive granulocytes migrated rapidly and were followed by monocytes and L3T4+ T cells that enclosed the infected KC. Thereafter, Ly-2+ T cells were prominent members of the granulomatous lymphoid population. Parasites multiplied until 4 wk, and then a prompt reduction in infected cells occurred. This was associated with a sharp decline in the L3T4+ T cells of the granulomas and the maintenance of the Ly-2+ subset. In comparison, athymic nu/nu mice developed smaller, more slowly appearing granulomas that contained granulocytes and monocytes and exhibited progressive parasite replication. Upon rechallenge, the entire process was completed in 2 wk, and infected KC in the euthymic mice were never observed. We hypothesize that the effectiveness of the granulomatous response requires the destruction of parasitized host cells (KC), in a lymphokine rich environment. We further suggest that the Ly-2+ T cell serves as an important effector cell in this process, either by direct cytotoxicity or by supporting the cytotoxic potential of other cell types in the granuloma. The Rockefeller University Press 1988-06-01 /pmc/articles/PMC2189681/ /pubmed/3290381 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles The dynamics of granuloma formation in experimental visceral leishmaniasis |
title | The dynamics of granuloma formation in experimental visceral leishmaniasis |
title_full | The dynamics of granuloma formation in experimental visceral leishmaniasis |
title_fullStr | The dynamics of granuloma formation in experimental visceral leishmaniasis |
title_full_unstemmed | The dynamics of granuloma formation in experimental visceral leishmaniasis |
title_short | The dynamics of granuloma formation in experimental visceral leishmaniasis |
title_sort | dynamics of granuloma formation in experimental visceral leishmaniasis |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189681/ https://www.ncbi.nlm.nih.gov/pubmed/3290381 |