Cargando…
The requirement for DNA synthesis and gene expression in the generation of cytotoxicity in vitro
The requirement for cell division and expression of new genes was examined in the primary and secondary mouse mixed leukocyte culture (MLC). Hydroxyurea (HU) was used to block DNA synthesis and cell division, and 5-bromo-2'-deoxyuridine (BUdR) was used to probe for the expression of new cell-sp...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1975
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189954/ https://www.ncbi.nlm.nih.gov/pubmed/127017 |
_version_ | 1782146736020520960 |
---|---|
collection | PubMed |
description | The requirement for cell division and expression of new genes was examined in the primary and secondary mouse mixed leukocyte culture (MLC). Hydroxyurea (HU) was used to block DNA synthesis and cell division, and 5-bromo-2'-deoxyuridine (BUdR) was used to probe for the expression of new cell-specific genes. In the primary MLC, inhibition of DNA synthesis and cell division by HU almost totally suppressed the generation of initial, target-specific cytotoxicity. When HU was washed out of the cultures, cytotoxicity was generated after a lag time approximately equal to the period of treatment with HU. The rate of development and maximal value of cytotoxicity in HU-reversed cultures was identical to untreated controls, suggesting that the inhibition was not due to a nonspecific lethal effect of the drug. Development of initial cytotoxicity in primary MLC was similarly suppressed by levels of BUdR 25 to 75-fold below the levels of this drug having nonspecific mutagenic effects in lymphocytes, indicating that development of cytotoxicity was also dependent on the expression of a new genetic program. In the secondary MLC, regeneration of both DNA synthesis and cytotoxicity was apparent 12-15 h after re-exposure to initial stimulating antigen. In this reaction, however, generation of cytotoxicity was insensitive to both HU and BUdR. Thus, the cytotoxic program developed in the primary MLC appears to be genetically stable through the production of effector memory cells, and into regeneration of fully cytotoxic memory cells in secondary MLC. |
format | Text |
id | pubmed-2189954 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1975 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21899542008-04-17 The requirement for DNA synthesis and gene expression in the generation of cytotoxicity in vitro J Exp Med Articles The requirement for cell division and expression of new genes was examined in the primary and secondary mouse mixed leukocyte culture (MLC). Hydroxyurea (HU) was used to block DNA synthesis and cell division, and 5-bromo-2'-deoxyuridine (BUdR) was used to probe for the expression of new cell-specific genes. In the primary MLC, inhibition of DNA synthesis and cell division by HU almost totally suppressed the generation of initial, target-specific cytotoxicity. When HU was washed out of the cultures, cytotoxicity was generated after a lag time approximately equal to the period of treatment with HU. The rate of development and maximal value of cytotoxicity in HU-reversed cultures was identical to untreated controls, suggesting that the inhibition was not due to a nonspecific lethal effect of the drug. Development of initial cytotoxicity in primary MLC was similarly suppressed by levels of BUdR 25 to 75-fold below the levels of this drug having nonspecific mutagenic effects in lymphocytes, indicating that development of cytotoxicity was also dependent on the expression of a new genetic program. In the secondary MLC, regeneration of both DNA synthesis and cytotoxicity was apparent 12-15 h after re-exposure to initial stimulating antigen. In this reaction, however, generation of cytotoxicity was insensitive to both HU and BUdR. Thus, the cytotoxic program developed in the primary MLC appears to be genetically stable through the production of effector memory cells, and into regeneration of fully cytotoxic memory cells in secondary MLC. The Rockefeller University Press 1975-10-01 /pmc/articles/PMC2189954/ /pubmed/127017 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles The requirement for DNA synthesis and gene expression in the generation of cytotoxicity in vitro |
title | The requirement for DNA synthesis and gene expression in the generation of cytotoxicity in vitro |
title_full | The requirement for DNA synthesis and gene expression in the generation of cytotoxicity in vitro |
title_fullStr | The requirement for DNA synthesis and gene expression in the generation of cytotoxicity in vitro |
title_full_unstemmed | The requirement for DNA synthesis and gene expression in the generation of cytotoxicity in vitro |
title_short | The requirement for DNA synthesis and gene expression in the generation of cytotoxicity in vitro |
title_sort | requirement for dna synthesis and gene expression in the generation of cytotoxicity in vitro |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189954/ https://www.ncbi.nlm.nih.gov/pubmed/127017 |