Cargando…

Regulatory mechanisms in cell-mediated immune responses. IV. Expression of a receptor for mixed lymphocyte reaction suppressor factor on activated T lymphocytes

Suppression of the mixed lymphocyte reaction (MLR) by a soluble factor produced by alloantigen-activated spleen cells requires genetic homology between the factor-producing cells and responder cells in MLR. The ability of lymphocytes used as MLR responder cells to adsorb MLR suppressor factor was te...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1976
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190455/
https://www.ncbi.nlm.nih.gov/pubmed/1086882
Descripción
Sumario:Suppression of the mixed lymphocyte reaction (MLR) by a soluble factor produced by alloantigen-activated spleen cells requires genetic homology between the factor-producing cells and responder cells in MLR. The ability of lymphocytes used as MLR responder cells to adsorb MLR suppressor factor was tested to investigate the expression of a receptor structure for suppressor molecules. Normal spleen or thymus cells had no effect on suppressor activity. Concanavalin A (Con A)- activated thymocytes, however, effectively removed suppressor activity, suggesting that the receptor is expressed only after activation and is not present or not functional on resting cells. Significantly neither phytohemagglutinin- nor lipopolysaccharide-activated lymphoid cells absorbed the factor. Furthermore, only Con A-activated thymocytes demonstrating genetic homology with the cell producing suppressor factor for H-2 regions to the right of I-E were effective absorbants. Alloantigen-stimulated spleen cells syngeneic to the suppressor cell also removed suppressor activity. These data support an hypothesis that subsequent to stimulation in MLR, T lymphocytes express a receptor, either through synthesis or alteration of an existing molecular structure, which then provides the appropriate site for interaction with suppressor molecules.