Cargando…
Nischarin, a Novel Protein That Interacts with the Integrin α5 Subunit and Inhibits Cell Migration
Integrins have been implicated in key cellular functions, including cytoskeletal organization, motility, growth, survival, and control of gene expression. The plethora of integrin α and β subunits suggests that individual integrins have unique biological roles, implying specific molecular connection...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2000
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190593/ https://www.ncbi.nlm.nih.gov/pubmed/11121431 |
Sumario: | Integrins have been implicated in key cellular functions, including cytoskeletal organization, motility, growth, survival, and control of gene expression. The plethora of integrin α and β subunits suggests that individual integrins have unique biological roles, implying specific molecular connections between integrins and intracellular signaling or regulatory pathways. Here, we have used a yeast two-hybrid screen to identify a novel protein, termed Nischarin, that binds preferentially to the cytoplasmic domain of the integrin α5 subunit, inhibits cell motility, and alters actin filament organization. Nischarin is primarily a cytosolic protein, but clearly associates with α5β1, as demonstrated by coimmunoprecipitation. Overexpression of Nischarin markedly reduces α5β1-dependent cell migration in several cell types. Rat embryo fibroblasts transfected with Nischarin constructs have “basket-like” networks of peripheral actin filaments, rather than typical stress fibers. These observations suggest that Nischarin might affect signaling to the cytoskeleton regulated by Rho-family GTPases. In support of this, Nischarin expression reverses the effect of Rac on lamellipodia formation and selectively inhibits Rac-mediated activation of the c-fos promoter. Thus, Nischarin may play a negative role in cell migration by antagonizing the actions of Rac on cytoskeletal organization and cell movement. |
---|