Cargando…

Small-scale extracts for the study of nucleotide excision repair and non-homologous end joining

The repair of DNA by nucleotide excision repair (NER) and non-homologous end joining (NHEJ) is essential for maintenance of genomic integrity and cell viability. Examination of NHEJ and NER in vitro using cell-free extracts has led to a deeper understanding of the biochemical mechanisms that underli...

Descripción completa

Detalles Bibliográficos
Autores principales: Smeaton, Michael B., Miller, Paul S., Ketner, Gary, Hanakahi, Les A.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190712/
https://www.ncbi.nlm.nih.gov/pubmed/18073193
http://dx.doi.org/10.1093/nar/gkm974
Descripción
Sumario:The repair of DNA by nucleotide excision repair (NER) and non-homologous end joining (NHEJ) is essential for maintenance of genomic integrity and cell viability. Examination of NHEJ and NER in vitro using cell-free extracts has led to a deeper understanding of the biochemical mechanisms that underlie these processes. Current methods for production of whole-cell extracts (WCEs) to investigate NER and NHEJ start with one or more liters of culture containing 1–5 × 10(9) cells. Here, we describe a small-scale method for production of WCE that can be used to study NER. We also describe a rapid, small-scale method for the preparation of WCE that can be used in the study of NHEJ. These methods require less time, 20- to 1000-fold fewer cells than large-scale extracts, facilitate examination of numerous samples and are ideal for such applications as the study of host–virus interactions and analysis of mutant cell lines.