Cargando…

Changes at peptide residues buried in the major histocompatibility complex (MHC) class I binding cleft influence T cell recognition: a possible role for indirect conformational alterations in the MHC class I or bound peptide in determining T cell recognition

Recent crystallographic studies on two peptide complexes with the mouse Kb molecule have shown that peptide binding appears to alter the conformation of the class I alpha-helical regions that flank the antigen binding cleft. Given that this study also showed that much of the foreign peptide is burie...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190936/
https://www.ncbi.nlm.nih.gov/pubmed/8436915
_version_ 1782146886996590592
collection PubMed
description Recent crystallographic studies on two peptide complexes with the mouse Kb molecule have shown that peptide binding appears to alter the conformation of the class I alpha-helical regions that flank the antigen binding cleft. Given that this study also showed that much of the foreign peptide is buried within the class I binding cleft with only a small portion accessible for direct interaction with the components of the T cell receptor, this finding suggests that at least some component of T cell specificity may arise as a consequence of peptide-induced conformational changes in the class I structure. To assess this possibility, we have made systematic substitutions at residues within the Kb-restricted determinant from ovalbumin (OVA257- 264) that are thought to be buried on binding to the class I molecule. We have found that changes in this determinant at the completely buried second residue (P2) can influence T cell recognition without affecting binding to Kb, suggesting that the substitutions may indirectly determine T cell recognition by altering the conformation of the class I molecule or the bound peptide.
format Text
id pubmed-2190936
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21909362008-04-16 Changes at peptide residues buried in the major histocompatibility complex (MHC) class I binding cleft influence T cell recognition: a possible role for indirect conformational alterations in the MHC class I or bound peptide in determining T cell recognition J Exp Med Articles Recent crystallographic studies on two peptide complexes with the mouse Kb molecule have shown that peptide binding appears to alter the conformation of the class I alpha-helical regions that flank the antigen binding cleft. Given that this study also showed that much of the foreign peptide is buried within the class I binding cleft with only a small portion accessible for direct interaction with the components of the T cell receptor, this finding suggests that at least some component of T cell specificity may arise as a consequence of peptide-induced conformational changes in the class I structure. To assess this possibility, we have made systematic substitutions at residues within the Kb-restricted determinant from ovalbumin (OVA257- 264) that are thought to be buried on binding to the class I molecule. We have found that changes in this determinant at the completely buried second residue (P2) can influence T cell recognition without affecting binding to Kb, suggesting that the substitutions may indirectly determine T cell recognition by altering the conformation of the class I molecule or the bound peptide. The Rockefeller University Press 1993-03-01 /pmc/articles/PMC2190936/ /pubmed/8436915 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Changes at peptide residues buried in the major histocompatibility complex (MHC) class I binding cleft influence T cell recognition: a possible role for indirect conformational alterations in the MHC class I or bound peptide in determining T cell recognition
title Changes at peptide residues buried in the major histocompatibility complex (MHC) class I binding cleft influence T cell recognition: a possible role for indirect conformational alterations in the MHC class I or bound peptide in determining T cell recognition
title_full Changes at peptide residues buried in the major histocompatibility complex (MHC) class I binding cleft influence T cell recognition: a possible role for indirect conformational alterations in the MHC class I or bound peptide in determining T cell recognition
title_fullStr Changes at peptide residues buried in the major histocompatibility complex (MHC) class I binding cleft influence T cell recognition: a possible role for indirect conformational alterations in the MHC class I or bound peptide in determining T cell recognition
title_full_unstemmed Changes at peptide residues buried in the major histocompatibility complex (MHC) class I binding cleft influence T cell recognition: a possible role for indirect conformational alterations in the MHC class I or bound peptide in determining T cell recognition
title_short Changes at peptide residues buried in the major histocompatibility complex (MHC) class I binding cleft influence T cell recognition: a possible role for indirect conformational alterations in the MHC class I or bound peptide in determining T cell recognition
title_sort changes at peptide residues buried in the major histocompatibility complex (mhc) class i binding cleft influence t cell recognition: a possible role for indirect conformational alterations in the mhc class i or bound peptide in determining t cell recognition
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190936/
https://www.ncbi.nlm.nih.gov/pubmed/8436915