Cargando…

Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo

Dendritic cells, while effective in sensitizing T cells to several different antigens, show little or no phagocytic activity. To the extent that endocytosis is required for antigen processing and presentation, it is not evident how dendritic cells would present particle-associated peptides. Evidence...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191128/
https://www.ncbi.nlm.nih.gov/pubmed/7688024
_version_ 1782146932202799104
collection PubMed
description Dendritic cells, while effective in sensitizing T cells to several different antigens, show little or no phagocytic activity. To the extent that endocytosis is required for antigen processing and presentation, it is not evident how dendritic cells would present particle-associated peptides. Evidence has now been obtained showing that progenitors to dendritic cells can internalize particles, including Bacillus Calmette-Guerin (BCG) mycobacteria. The particulates are applied for 20 h to bone marrow cultures that have been stimulated with granulocyte/macrophage colony-stimulating factor (GM-CSF) to induce aggregates of growing dendritic cells. Cells within these aggregates are clearly phagocytic. If the developing cultures are exposed to particles, washed, and "chased" for 2 d, the number of major histocompatibility complex class II-rich dendritic cells increases substantially and at least 50% contain internalized mycobacteria or latex particles. The mycobacteria-laden, newly developed dendritic cells are much more potent in presenting antigens to primed T cells than corresponding cultures of mature dendritic cells that are exposed to a pulse of organisms. A similar situation exists when the BCG- charged dendritic cells are injected into the footpad or blood stream of naive mice. Those dendritic cells that have phagocytosed organisms induce the strongest T cell responses to mycobacterial antigens in draining lymph node and spleen. The administration of antigens to GM- CSF-induced, developing dendritic cells (by increasing both antigen uptake and cell numbers) will facilitate the use of these antigen- presenting cells for active immunization in situ.
format Text
id pubmed-2191128
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21911282008-04-16 Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo J Exp Med Articles Dendritic cells, while effective in sensitizing T cells to several different antigens, show little or no phagocytic activity. To the extent that endocytosis is required for antigen processing and presentation, it is not evident how dendritic cells would present particle-associated peptides. Evidence has now been obtained showing that progenitors to dendritic cells can internalize particles, including Bacillus Calmette-Guerin (BCG) mycobacteria. The particulates are applied for 20 h to bone marrow cultures that have been stimulated with granulocyte/macrophage colony-stimulating factor (GM-CSF) to induce aggregates of growing dendritic cells. Cells within these aggregates are clearly phagocytic. If the developing cultures are exposed to particles, washed, and "chased" for 2 d, the number of major histocompatibility complex class II-rich dendritic cells increases substantially and at least 50% contain internalized mycobacteria or latex particles. The mycobacteria-laden, newly developed dendritic cells are much more potent in presenting antigens to primed T cells than corresponding cultures of mature dendritic cells that are exposed to a pulse of organisms. A similar situation exists when the BCG- charged dendritic cells are injected into the footpad or blood stream of naive mice. Those dendritic cells that have phagocytosed organisms induce the strongest T cell responses to mycobacterial antigens in draining lymph node and spleen. The administration of antigens to GM- CSF-induced, developing dendritic cells (by increasing both antigen uptake and cell numbers) will facilitate the use of these antigen- presenting cells for active immunization in situ. The Rockefeller University Press 1993-08-01 /pmc/articles/PMC2191128/ /pubmed/7688024 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo
title Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo
title_full Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo
title_fullStr Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo
title_full_unstemmed Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo
title_short Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo
title_sort dendritic cell progenitors phagocytose particulates, including bacillus calmette-guerin organisms, and sensitize mice to mycobacterial antigens in vivo
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191128/
https://www.ncbi.nlm.nih.gov/pubmed/7688024