Cargando…
Human keratinocyte growth factor effects in a porcine model of epidermal wound healing
Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family (hence the alternative designation FGF-7). It is produced by stromal cells, but acts as a mitogen for epithelial cells. We examined the effects of topically applied KGF on healing of wounds in a porcine model....
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191158/ https://www.ncbi.nlm.nih.gov/pubmed/8350059 |
_version_ | 1782146939053146112 |
---|---|
author | Staiano-Coico, L. Krueger, J. G. Rubin, J. S. D'limi, S. Vallat, V. P. Valentino, L. Fahey, T. Hawes, A. Kingston, G. Madden, M. R. Mathwich, M. Gottlieb, A. Aaronson, S. A. |
author_facet | Staiano-Coico, L. Krueger, J. G. Rubin, J. S. D'limi, S. Vallat, V. P. Valentino, L. Fahey, T. Hawes, A. Kingston, G. Madden, M. R. Mathwich, M. Gottlieb, A. Aaronson, S. A. |
author_sort | Staiano-Coico, L. |
collection | PubMed |
description | Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family (hence the alternative designation FGF-7). It is produced by stromal cells, but acts as a mitogen for epithelial cells. We examined the effects of topically applied KGF on healing of wounds in a porcine model. In partial-thickness wounds, KGF stimulated the rate of reepithelialization (p < 0.0002), associated with a thickening of the epidermis (p < 0.0001). Epidermis from KGF-treated full-thickness wound sites was significantly thicker (0.31 +/- 0.22 mm) compared with mirror image control sites (0.18 +/- 0.12 mm) (p < 0.0001). Moreover, the majority (77%) of KGF-treated wounds exhibited epidermis with a deep rete ridge pattern as compared with control sites. These effects were observed as early as 14 d and persisted for at least 4 wk. KGF treatment also increased the number of serrated basal cells associated with increased deposition of collagen fibers in the superficial dermis adjacent to the acanthotic epidermis. Electron microscopy revealed better developed hemidesmosomes associated with thicker bundles of tonofilaments in the serrated cells. The pattern of epidermal thickening observed in KGF-treated wounds resembled psoriasis. Psoriasis is a disease associated with epidermal thickening, parakeratosis as well as hyperproliferation that extends beyond the basal layer. In striking contrast to psoriasis, KGF-treated wounds exhibited normal orthokeratotic maturation, and proliferation was localized to the basal cells. Our present findings have significant implications concerning the role of KGF as a paracrine modulator of epidermal proliferation and differentiation. |
format | Text |
id | pubmed-2191158 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1993 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21911582008-04-16 Human keratinocyte growth factor effects in a porcine model of epidermal wound healing Staiano-Coico, L. Krueger, J. G. Rubin, J. S. D'limi, S. Vallat, V. P. Valentino, L. Fahey, T. Hawes, A. Kingston, G. Madden, M. R. Mathwich, M. Gottlieb, A. Aaronson, S. A. J Exp Med Article Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family (hence the alternative designation FGF-7). It is produced by stromal cells, but acts as a mitogen for epithelial cells. We examined the effects of topically applied KGF on healing of wounds in a porcine model. In partial-thickness wounds, KGF stimulated the rate of reepithelialization (p < 0.0002), associated with a thickening of the epidermis (p < 0.0001). Epidermis from KGF-treated full-thickness wound sites was significantly thicker (0.31 +/- 0.22 mm) compared with mirror image control sites (0.18 +/- 0.12 mm) (p < 0.0001). Moreover, the majority (77%) of KGF-treated wounds exhibited epidermis with a deep rete ridge pattern as compared with control sites. These effects were observed as early as 14 d and persisted for at least 4 wk. KGF treatment also increased the number of serrated basal cells associated with increased deposition of collagen fibers in the superficial dermis adjacent to the acanthotic epidermis. Electron microscopy revealed better developed hemidesmosomes associated with thicker bundles of tonofilaments in the serrated cells. The pattern of epidermal thickening observed in KGF-treated wounds resembled psoriasis. Psoriasis is a disease associated with epidermal thickening, parakeratosis as well as hyperproliferation that extends beyond the basal layer. In striking contrast to psoriasis, KGF-treated wounds exhibited normal orthokeratotic maturation, and proliferation was localized to the basal cells. Our present findings have significant implications concerning the role of KGF as a paracrine modulator of epidermal proliferation and differentiation. The Rockefeller University Press 1993-09-01 /pmc/articles/PMC2191158/ /pubmed/8350059 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Staiano-Coico, L. Krueger, J. G. Rubin, J. S. D'limi, S. Vallat, V. P. Valentino, L. Fahey, T. Hawes, A. Kingston, G. Madden, M. R. Mathwich, M. Gottlieb, A. Aaronson, S. A. Human keratinocyte growth factor effects in a porcine model of epidermal wound healing |
title | Human keratinocyte growth factor effects in a porcine model of epidermal wound healing |
title_full | Human keratinocyte growth factor effects in a porcine model of epidermal wound healing |
title_fullStr | Human keratinocyte growth factor effects in a porcine model of epidermal wound healing |
title_full_unstemmed | Human keratinocyte growth factor effects in a porcine model of epidermal wound healing |
title_short | Human keratinocyte growth factor effects in a porcine model of epidermal wound healing |
title_sort | human keratinocyte growth factor effects in a porcine model of epidermal wound healing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191158/ https://www.ncbi.nlm.nih.gov/pubmed/8350059 |
work_keys_str_mv | AT staianocoicol humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT kruegerjg humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT rubinjs humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT dlimis humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT vallatvp humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT valentinol humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT faheyt humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT hawesa humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT kingstong humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT maddenmr humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT mathwichm humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT gottlieba humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing AT aaronsonsa humankeratinocytegrowthfactoreffectsinaporcinemodelofepidermalwoundhealing |