Cargando…

The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production

The immunological basis for atopy is currently ascribed to an inherent bias in the CD4+ T cell response to nonreplicating antigens presented at mucosal surfaces, resulting in dominance of the T helper 2 (Th2) interleukin 4 (IL-4)-producing phenotype, which favors IgE production. In contrast, the &qu...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191183/
https://www.ncbi.nlm.nih.gov/pubmed/8102390
_version_ 1782146944906297344
collection PubMed
description The immunological basis for atopy is currently ascribed to an inherent bias in the CD4+ T cell response to nonreplicating antigens presented at mucosal surfaces, resulting in dominance of the T helper 2 (Th2) interleukin 4 (IL-4)-producing phenotype, which favors IgE production. In contrast, the "normal" response to such antigens involves a predominance of interferon gamma (IFN-gamma)-producing Th1 clones. This difference has been suggested to be the result of active selection in atopics for Th2 (and hence against Th1) clones at the time of initial antigen presentation. In the study below, we demonstrate that the natural immune response to inhaled protein antigens, particularly in animals expressing the low immunoglobulin E (IgE) responder phenotype, includes a major histocompatibility complex (MHC) class I-restricted CD8+ T cell component, the appearance of which is associated with active suppression of IgE antibody production. Thus, continued exposure of rats to aerosolized ovalbumin (OVA) antigen elicits a transient IgE response, that is terminated by the onset of a state of apparent "tolerance" to further challenge, and this tolerant state is transferable to naive animals with CD8+ T cells. Kinetic studies on in vitro T cell reactivity in these aerosol-exposed rats demonstrated biphasic CD4+ Th2 responses which terminated, together with IgE antibody production, and coincident with the appearance of MHC class I- restricted OVA-specific IFN-gamma-producing CD8+ T cells. However, the latter were not autonomous in vitro and required a source of exogenous IL-2 for initial activation, which in CD(8+)-enriched splenocyte cultures could be provided by small numbers of contaminating OVA- specific CD4+ T cells. This represents the first formal evidence for the induction of an MHC class I-restricted T cell response to natural mucosal exposure to an inert protein antigen, and is consistent with a growing literature demonstrating sensitization of MHC class I- restricted CD8+ T cells by deliberate immunization with soluble proteins. We suggest that crossregulation of MHC class II-restricted CD4+ T cells via cytokine signals generated in parallel CD8+ T cell responses represents a covert and potentially important selection pressure that can shape the nature of host responses to nonreplicating antigens presented at mucosal surfaces.
format Text
id pubmed-2191183
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21911832008-04-16 The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production J Exp Med Articles The immunological basis for atopy is currently ascribed to an inherent bias in the CD4+ T cell response to nonreplicating antigens presented at mucosal surfaces, resulting in dominance of the T helper 2 (Th2) interleukin 4 (IL-4)-producing phenotype, which favors IgE production. In contrast, the "normal" response to such antigens involves a predominance of interferon gamma (IFN-gamma)-producing Th1 clones. This difference has been suggested to be the result of active selection in atopics for Th2 (and hence against Th1) clones at the time of initial antigen presentation. In the study below, we demonstrate that the natural immune response to inhaled protein antigens, particularly in animals expressing the low immunoglobulin E (IgE) responder phenotype, includes a major histocompatibility complex (MHC) class I-restricted CD8+ T cell component, the appearance of which is associated with active suppression of IgE antibody production. Thus, continued exposure of rats to aerosolized ovalbumin (OVA) antigen elicits a transient IgE response, that is terminated by the onset of a state of apparent "tolerance" to further challenge, and this tolerant state is transferable to naive animals with CD8+ T cells. Kinetic studies on in vitro T cell reactivity in these aerosol-exposed rats demonstrated biphasic CD4+ Th2 responses which terminated, together with IgE antibody production, and coincident with the appearance of MHC class I- restricted OVA-specific IFN-gamma-producing CD8+ T cells. However, the latter were not autonomous in vitro and required a source of exogenous IL-2 for initial activation, which in CD(8+)-enriched splenocyte cultures could be provided by small numbers of contaminating OVA- specific CD4+ T cells. This represents the first formal evidence for the induction of an MHC class I-restricted T cell response to natural mucosal exposure to an inert protein antigen, and is consistent with a growing literature demonstrating sensitization of MHC class I- restricted CD8+ T cells by deliberate immunization with soluble proteins. We suggest that crossregulation of MHC class II-restricted CD4+ T cells via cytokine signals generated in parallel CD8+ T cell responses represents a covert and potentially important selection pressure that can shape the nature of host responses to nonreplicating antigens presented at mucosal surfaces. The Rockefeller University Press 1993-09-01 /pmc/articles/PMC2191183/ /pubmed/8102390 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production
title The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production
title_full The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production
title_fullStr The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production
title_full_unstemmed The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production
title_short The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production
title_sort natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (mhc) class i-restricted cd8+ t cell-mediated but mhc class ii-restricted cd4+ t cell-dependent immune deviation resulting in selective suppression of immunoglobulin e production
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191183/
https://www.ncbi.nlm.nih.gov/pubmed/8102390