Cargando…
The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production
The immunological basis for atopy is currently ascribed to an inherent bias in the CD4+ T cell response to nonreplicating antigens presented at mucosal surfaces, resulting in dominance of the T helper 2 (Th2) interleukin 4 (IL-4)-producing phenotype, which favors IgE production. In contrast, the &qu...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191183/ https://www.ncbi.nlm.nih.gov/pubmed/8102390 |
_version_ | 1782146944906297344 |
---|---|
collection | PubMed |
description | The immunological basis for atopy is currently ascribed to an inherent bias in the CD4+ T cell response to nonreplicating antigens presented at mucosal surfaces, resulting in dominance of the T helper 2 (Th2) interleukin 4 (IL-4)-producing phenotype, which favors IgE production. In contrast, the "normal" response to such antigens involves a predominance of interferon gamma (IFN-gamma)-producing Th1 clones. This difference has been suggested to be the result of active selection in atopics for Th2 (and hence against Th1) clones at the time of initial antigen presentation. In the study below, we demonstrate that the natural immune response to inhaled protein antigens, particularly in animals expressing the low immunoglobulin E (IgE) responder phenotype, includes a major histocompatibility complex (MHC) class I-restricted CD8+ T cell component, the appearance of which is associated with active suppression of IgE antibody production. Thus, continued exposure of rats to aerosolized ovalbumin (OVA) antigen elicits a transient IgE response, that is terminated by the onset of a state of apparent "tolerance" to further challenge, and this tolerant state is transferable to naive animals with CD8+ T cells. Kinetic studies on in vitro T cell reactivity in these aerosol-exposed rats demonstrated biphasic CD4+ Th2 responses which terminated, together with IgE antibody production, and coincident with the appearance of MHC class I- restricted OVA-specific IFN-gamma-producing CD8+ T cells. However, the latter were not autonomous in vitro and required a source of exogenous IL-2 for initial activation, which in CD(8+)-enriched splenocyte cultures could be provided by small numbers of contaminating OVA- specific CD4+ T cells. This represents the first formal evidence for the induction of an MHC class I-restricted T cell response to natural mucosal exposure to an inert protein antigen, and is consistent with a growing literature demonstrating sensitization of MHC class I- restricted CD8+ T cells by deliberate immunization with soluble proteins. We suggest that crossregulation of MHC class II-restricted CD4+ T cells via cytokine signals generated in parallel CD8+ T cell responses represents a covert and potentially important selection pressure that can shape the nature of host responses to nonreplicating antigens presented at mucosal surfaces. |
format | Text |
id | pubmed-2191183 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1993 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21911832008-04-16 The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production J Exp Med Articles The immunological basis for atopy is currently ascribed to an inherent bias in the CD4+ T cell response to nonreplicating antigens presented at mucosal surfaces, resulting in dominance of the T helper 2 (Th2) interleukin 4 (IL-4)-producing phenotype, which favors IgE production. In contrast, the "normal" response to such antigens involves a predominance of interferon gamma (IFN-gamma)-producing Th1 clones. This difference has been suggested to be the result of active selection in atopics for Th2 (and hence against Th1) clones at the time of initial antigen presentation. In the study below, we demonstrate that the natural immune response to inhaled protein antigens, particularly in animals expressing the low immunoglobulin E (IgE) responder phenotype, includes a major histocompatibility complex (MHC) class I-restricted CD8+ T cell component, the appearance of which is associated with active suppression of IgE antibody production. Thus, continued exposure of rats to aerosolized ovalbumin (OVA) antigen elicits a transient IgE response, that is terminated by the onset of a state of apparent "tolerance" to further challenge, and this tolerant state is transferable to naive animals with CD8+ T cells. Kinetic studies on in vitro T cell reactivity in these aerosol-exposed rats demonstrated biphasic CD4+ Th2 responses which terminated, together with IgE antibody production, and coincident with the appearance of MHC class I- restricted OVA-specific IFN-gamma-producing CD8+ T cells. However, the latter were not autonomous in vitro and required a source of exogenous IL-2 for initial activation, which in CD(8+)-enriched splenocyte cultures could be provided by small numbers of contaminating OVA- specific CD4+ T cells. This represents the first formal evidence for the induction of an MHC class I-restricted T cell response to natural mucosal exposure to an inert protein antigen, and is consistent with a growing literature demonstrating sensitization of MHC class I- restricted CD8+ T cells by deliberate immunization with soluble proteins. We suggest that crossregulation of MHC class II-restricted CD4+ T cells via cytokine signals generated in parallel CD8+ T cell responses represents a covert and potentially important selection pressure that can shape the nature of host responses to nonreplicating antigens presented at mucosal surfaces. The Rockefeller University Press 1993-09-01 /pmc/articles/PMC2191183/ /pubmed/8102390 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production |
title | The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production |
title_full | The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production |
title_fullStr | The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production |
title_full_unstemmed | The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production |
title_short | The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production |
title_sort | natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (mhc) class i-restricted cd8+ t cell-mediated but mhc class ii-restricted cd4+ t cell-dependent immune deviation resulting in selective suppression of immunoglobulin e production |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191183/ https://www.ncbi.nlm.nih.gov/pubmed/8102390 |