Cargando…

I-E+ nonobese diabetic mice develop insulitis and diabetes

The development of type I diabetes in the nonobese diabetic (NOD) mouse is under the control of multiple genes, one or more of which is linked to the major histocompatibility complex (MHC). The MHC class II region has been implicated in disease development, with expression of an I-E transgene in NOD...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191185/
https://www.ncbi.nlm.nih.gov/pubmed/8350054
_version_ 1782146945366622208
collection PubMed
description The development of type I diabetes in the nonobese diabetic (NOD) mouse is under the control of multiple genes, one or more of which is linked to the major histocompatibility complex (MHC). The MHC class II region has been implicated in disease development, with expression of an I-E transgene in NOD mice shown to provide protection from insulitis and diabetes. To examine the effect of expressing an I-E+ or I-E- non-NOD MHC on the NOD background, three I-E+ and three I-E- NOD MHC congenic strains (NOD.H-2i5, NOD.H-2k, and NOD.H-2h2, and NOD.H-2h4, NOD.H-2i7, and NOD.H-2b, respectively) were developed. Of these strains, both I-E+ NOD.H-2h2 and I-E- NOD.H-2h4 mice developed insulitis, but not diabetes. The remaining four congenic strains were free of insulitis and diabetes. These results indicate that in the absence of the NOD MHC, diabetes fails to develop. Each NOD MHC congenic strain was crossed with the NOD strain to produce I-E+ and I-E- F1 mice; these mice thus expressed one dose of the NOD MHC and one dose of a non-NOD MHC on the NOD background. While a single dose of a non-NOD MHC provided a large degree of disease protection to all of the F1 strains, a proportion of I-E+ and I-E- F1 mice aged 5-12 mo developed insulitis and cyclophosphamide-induced diabetes. When I-E+ F1 mice were aged 9-17 mo, spontaneous diabetes developed as well. These data are the first to demonstrate that I-E+ NOD mice develop diabetes, indicating that expression of I-E in NOD mice is not in itself sufficient to prevent insulitis or diabetes. In fact, I-E- F1 strains were no more protected from diabetes than I-E+ F1 strains, suggesting that other non-NOD MHC- linked genes are important in protection from disease. Finally, transfer of NOD bone marrow into irradiated I-E+ F1 recipients resulted in high incidences of diabetes, indicating that expression of non-NOD MHC products in the thymus, in the absence of expression in bone marrow- derived cells, is not sufficient to provide protection from diabetes.
format Text
id pubmed-2191185
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21911852008-04-16 I-E+ nonobese diabetic mice develop insulitis and diabetes J Exp Med Articles The development of type I diabetes in the nonobese diabetic (NOD) mouse is under the control of multiple genes, one or more of which is linked to the major histocompatibility complex (MHC). The MHC class II region has been implicated in disease development, with expression of an I-E transgene in NOD mice shown to provide protection from insulitis and diabetes. To examine the effect of expressing an I-E+ or I-E- non-NOD MHC on the NOD background, three I-E+ and three I-E- NOD MHC congenic strains (NOD.H-2i5, NOD.H-2k, and NOD.H-2h2, and NOD.H-2h4, NOD.H-2i7, and NOD.H-2b, respectively) were developed. Of these strains, both I-E+ NOD.H-2h2 and I-E- NOD.H-2h4 mice developed insulitis, but not diabetes. The remaining four congenic strains were free of insulitis and diabetes. These results indicate that in the absence of the NOD MHC, diabetes fails to develop. Each NOD MHC congenic strain was crossed with the NOD strain to produce I-E+ and I-E- F1 mice; these mice thus expressed one dose of the NOD MHC and one dose of a non-NOD MHC on the NOD background. While a single dose of a non-NOD MHC provided a large degree of disease protection to all of the F1 strains, a proportion of I-E+ and I-E- F1 mice aged 5-12 mo developed insulitis and cyclophosphamide-induced diabetes. When I-E+ F1 mice were aged 9-17 mo, spontaneous diabetes developed as well. These data are the first to demonstrate that I-E+ NOD mice develop diabetes, indicating that expression of I-E in NOD mice is not in itself sufficient to prevent insulitis or diabetes. In fact, I-E- F1 strains were no more protected from diabetes than I-E+ F1 strains, suggesting that other non-NOD MHC- linked genes are important in protection from disease. Finally, transfer of NOD bone marrow into irradiated I-E+ F1 recipients resulted in high incidences of diabetes, indicating that expression of non-NOD MHC products in the thymus, in the absence of expression in bone marrow- derived cells, is not sufficient to provide protection from diabetes. The Rockefeller University Press 1993-09-01 /pmc/articles/PMC2191185/ /pubmed/8350054 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
I-E+ nonobese diabetic mice develop insulitis and diabetes
title I-E+ nonobese diabetic mice develop insulitis and diabetes
title_full I-E+ nonobese diabetic mice develop insulitis and diabetes
title_fullStr I-E+ nonobese diabetic mice develop insulitis and diabetes
title_full_unstemmed I-E+ nonobese diabetic mice develop insulitis and diabetes
title_short I-E+ nonobese diabetic mice develop insulitis and diabetes
title_sort i-e+ nonobese diabetic mice develop insulitis and diabetes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191185/
https://www.ncbi.nlm.nih.gov/pubmed/8350054